Alternating segment explicit-implicit scheme for nonlinear third-order KdV equation

被引:0
|
作者
曲富丽 [1 ]
王文洽 [2 ]
机构
[1] Accounting Department,Women's Academy at Shandong
[2] School of Mathematics and System Science,Shandong University
基金
中国国家自然科学基金;
关键词
KdV equation; intrinsic parallelism; alternating segment explicit-implicit difference scheme; unconditionally linear stable;
D O I
暂无
中图分类号
O241.82 [偏微分方程的数值解法];
学科分类号
摘要
A group of asymmetric difference schemes to approach the Korteweg-de Vries(KdV)equation is given here.According to such schemes,the full explicit difference scheme and the fun implicit one,an alternating segment explicit-implicit difference scheme for solving the KdV equation is constructed.The scheme is linear unconditionally stable by the analysis of linearization procedure,and is used directly on the parallel computer. The numerical experiments show that the method has high accuracy.
引用
收藏
页码:973 / 980
页数:8
相关论文
共 50 条
  • [21] EXPLICIT-IMPLICIT SCHEME FOR RELATIVISTIC RADIATION HYDRODYNAMICS
    Takahashi, Hiroyuki R.
    Ohsuga, Ken
    Sekiguchi, Yuichiro
    Inoue, Tsuyoshi
    Tomida, Kengo
    ASTROPHYSICAL JOURNAL, 2013, 764 (02):
  • [22] An explicit scheme for the KdV equation
    Wang Hui-Ping
    Wang Yu-Shun
    Hu Ying-Ying
    CHINESE PHYSICS LETTERS, 2008, 25 (07) : 2335 - 2338
  • [23] Segment explicit-implicit difference method on nonuniform mesh for parabolic equation with discontinuous coefficients
    Inst of Applied Physics and, Computational Mathematics, Beijing, China
    Int J Comput Math, 1-2 (133-152):
  • [24] Segment explicit-implicit difference method on nonuniform mesh for parabolic equation with discontinuous coefficients
    Li, DY
    Dong, SQ
    INTERNATIONAL JOURNAL OF COMPUTER MATHEMATICS, 1998, 68 (1-2) : 133 - 152
  • [25] A Conservative and Implicit Second-Order Nonlinear Numerical Scheme for the Rosenau-KdV Equation
    Guo, Cui
    Wang, Yinglin
    Luo, Yuesheng
    MATHEMATICS, 2021, 9 (11)
  • [26] INTEGRATION OF NONLINEAR DIFFERENTIAL EQUATION OF THIRD-ORDER
    GOFFARLO.J
    BULLETIN DE LA CLASSE DES SCIENCES ACADEMIE ROYALE DE BELGIQUE, 1971, 57 (07): : 795 - &
  • [28] INVARIANTS OF NONLINEAR DIFFERENTIAL EQUATION OF THIRD-ORDER
    BANDIC, I
    COMPTES RENDUS HEBDOMADAIRES DES SEANCES DE L ACADEMIE DES SCIENCES SERIE A, 1972, 274 (01): : 77 - &
  • [29] An explicit-implicit time stepping scheme for solidification models
    Pardeshi, R.
    Voller, V. R.
    Singh, A. K.
    Dutta, P.
    INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER, 2008, 51 (13-14) : 3399 - 3409
  • [30] A New Third-order Explicit Symplectic Scheme for Hamiltonian Systems
    Liu, Xiao-mei
    Zhu, Shuai
    CURRENT TRENDS IN COMPUTER SCIENCE AND MECHANICAL AUTOMATION, VOL 1, 2017, : 609 - 619