Phase-field simulation of competitive growth of grains in a binary alloy during directional solidification

被引:0
|
作者
Li Feng [1 ,2 ]
Ya-long Gao [1 ]
Ni-ni Lu [1 ]
Chang-sheng Zhu [2 ]
Guo-sheng An [1 ,2 ]
Jun-he Zhong [1 ]
机构
[1] College of Materials and Engineering, Lanzhou University of Technology
[2] State Key Laboratory of Advanced Processing and Recycling of Non-ferrous Metals, Lanzhou University of Technology
基金
中国国家自然科学基金;
关键词
phase-field method; binary alloy; directional solidification; different planes; competitive growth;
D O I
暂无
中图分类号
TG146.21 [];
学科分类号
080502 ;
摘要
Taking Al-2%mole-Cu binary alloy as an example, the influence of grain orientation on competitive growth of dendrites under different competitive modes was investigated by using the three-dimensional(3-D) phasefield method. The result of phase-field simulation was verified by applying cold spray and directional remelting. In the simulation process, two competitive modes were designed: in Scheme 1, the monolayer columnar grains in multilayer columnar crystals had different orientations; while in Scheme 2, they had the same orientation. The simulation result showed that in Scheme 1, the growth of the dendrites, whose orientation had a certain included angle with the direction of temperature gradient, was restrained by the growth of other dendrites whose direction was parallel to the direction of temperature gradient. Moreover, the larger the included angle between the grain orientation and temperature gradient, the earlier the cessation of dendrite growth. The secondary dendrites of dendrites whose grain orientation was parallel to the temperature gradient flourished with increasing included angles between the grain orientation and temperature gradient. In Scheme 2, the greater the included angle between grain orientation and temperature gradient, the easier the dendrites whose orientation showed a certain included angle with temperature gradient inserted between those grew parallel to the temperature gradient, and the better the growth condition thereafter. Some growing dendrites after intercalation were deflected to the temperature gradient, and the greater the included angle, the lower the deflection. The morphologies of the competitive growth dendrites obtained through simulation can also be found in metallographs of practical solidification experiments. This implies that the two modes of competitive growth of dendrites characterized in the simulation do exist and frequently appear in practical solidification processes.
引用
下载
收藏
页码:333 / 342
页数:10
相关论文
共 50 条
  • [31] Competitive grain growth in directional solidification investigated by phase field simulation
    Li, Junjie
    Wang, Zhijun
    Yang, Yujuan
    Wang, Jincheng
    MCWASP XIII: INTERNATIONAL CONFERENCE ON MODELING OF CASTING, WELDING AND ADVANCED SOLIDIFICATION PROCESSES, 2012, 33
  • [32] Investigation into microsegregation during solidification of a binary alloy by phase-field simulations
    Li, Junjie
    Wang, Jincheng
    Yang, Gencang
    JOURNAL OF CRYSTAL GROWTH, 2009, 311 (04) : 1217 - 1222
  • [33] Phase-field numerical simulation of three-dimensional competitive growth of dendrites in a binary alloy
    Feng, Li
    Gao, Ya-long
    Zhu, Chang-sheng
    An, Guo-sheng
    Deng, Xin
    Jia, Bei-bei
    CHINA FOUNDRY, 2018, 15 (01) : 44 - 50
  • [34] Phase-field numerical simulation of three-dimensional competitive growth of dendrites in a binary alloy
    Li Feng
    Ya-long Gao
    Chang-sheng Zhu
    Guo-sheng An
    Xin Deng
    Bei-bei Jia
    China Foundry, 2018, 15 (01) : 44 - 50
  • [35] Phase-field numerical simulation of three-dimensional competitive growth of dendrites in a binary alloy
    Li Feng
    Ya-long Gao
    Chang-sheng Zhu
    Guo-sheng An
    Xin Deng
    Bei-bei Jia
    China Foundry, 2018, 15 : 44 - 50
  • [36] Phase-field simulation of lamellar growth for a binary eutectic alloy
    Li Xin-zhong
    Liu Dong-mei
    Sun Tao
    Su Yan-qing
    Guo Jing-jie
    Fu Heng-zhi
    TRANSACTIONS OF NONFERROUS METALS SOCIETY OF CHINA, 2010, 20 (02) : 302 - 307
  • [37] Large-scale Phase-field Studies of Three-dimensional Dendrite Competitive Growth at the Converging Grain Boundary during Directional Solidification of a Bicrystal Binary Alloy
    Takaki, Tomohiro
    Sakane, Shinji
    Ohno, Munekazu
    Shibuta, Yasushi
    Shimokawabe, Takashi
    Aoki, Takayuki
    ISIJ INTERNATIONAL, 2016, 56 (08) : 1427 - 1435
  • [38] GPU-accelerated phase-field simulation of dendritic solidification in a binary alloy
    Yamanaka, Akinori
    Aoki, Takayuki
    Ogawa, Satoi
    Takaki, Tomohiro
    JOURNAL OF CRYSTAL GROWTH, 2011, 318 (01) : 40 - 45
  • [39] Phase-field simulation of lamellar growth for a binary eutectic alloy
    李新中
    刘冬梅
    孙涛
    苏彦庆
    郭景杰
    傅恒志
    Transactions of Nonferrous Metals Society of China, 2010, 20 (02) : 302 - 307
  • [40] Phase-field modeling of isothermal solidification in binary alloy
    Long, WY
    Cai, QZ
    Chen, LL
    Wei, BK
    ACTA PHYSICA SINICA, 2005, 54 (01) : 256 - 262