ON(η,d)-CONTRACTIBLE ORBITS OF VECTOR FIELDS

被引:1
|
作者
廖山涛
机构
[1] Peking University Beijing
[2] China
基金
中国国家自然科学基金;
关键词
Contractible periodic orbit; d)-contractibility; d)-sequence; hyperbolic singularity; ergodic; unstable manifold; standard system of differential equations; (*)-orbital stability;
D O I
暂无
中图分类号
学科分类号
摘要
Let ■ be the linear space of all C~1 vector fields X on a compact n-dimensionalC~∞ Riemann manifold(n≥2),endowed with the C~1 norm ‖X‖.Write θ(X)for the numberof contractible periodic orbits of X∈(?),which may be finite or infinite.Let (?)~* be the set ofall X∈(?) possessing the property that X has a neighbourhood (?) such that every Y∈(?) hasonly a finite number of singularities and at most a countable number of periodic orbits.Inthis paper,it is shown that any given S∈(?) has a neighbourhood (?) in (?) together with anumber λ=λ(?)>0 such that θ(X)≤λfor all X∈(?).
引用
下载
收藏
页码:193 / 227
页数:35
相关论文
共 50 条
  • [21] Orbits and global unique continuation for systems of vector fields
    Journal of Geometric Analysis, 7 (02): : 173 - 194
  • [22] The Closed Orbits of a Class of Cubic Vector Fields in R
    Hong Yan YIN
    Da ZHOU
    Xing An ZHANG
    Acta Mathematica Sinica,English Series, 2020, (12) : 1429 - 1440
  • [23] Normal forms for periodic orbits of real vector fields
    Ping Wang
    Hao Wu
    Wei Gu Li
    Acta Mathematica Sinica, English Series, 2008, 24 : 797 - 808
  • [24] The Closed Orbits of a Class of Cubic Vector Fields in ℝ3
    Hong Yan Yin
    Da Zhou
    Xing An Zhang
    Acta Mathematica Sinica, English Series, 2020, 36 : 1429 - 1440
  • [25] Normal Forms for Periodic Orbits of Real Vector Fields
    Ping WANG Hao WU Wei Gu LI School of Mathematical Sciences
    Acta Mathematica Sinica,English Series, 2008, 24 (05) : 797 - 808
  • [26] Validated computations for connecting orbits in polynomial vector fields
    van den Berg, Jan Bouwe
    Sheombarsing, Ray
    INDAGATIONES MATHEMATICAE-NEW SERIES, 2020, 31 (02): : 310 - 373
  • [27] Orbits and global unique continuation for systems of vector fields
    S. Berhanu
    G. A. Mendoza
    The Journal of Geometric Analysis, 1997, 7 (2): : 173 - 194
  • [28] Deformations of vector fields and canonical coordinates on coadjoint orbits
    S. P. Baranovskiĭ
    I. V. Shirokov
    Siberian Mathematical Journal, 2009, 50 : 580 - 586
  • [29] Deformations of vector fields and canonical coordinates on coadjoint orbits
    Baranovskii, S. P.
    Shirokov, I. V.
    SIBERIAN MATHEMATICAL JOURNAL, 2009, 50 (04) : 580 - 586
  • [30] Normal forms for periodic orbits of real vector fields
    Wang, Ping
    Wu, Hao
    Li, Wei Gu
    ACTA MATHEMATICA SINICA-ENGLISH SERIES, 2008, 24 (05) : 797 - 808