Structural,Electrical,and Lithium Ion Dynamics of Li2MnO3 from Density Functional Theory

被引:0
|
作者
陈永昌 [1 ]
霍苗 [1 ]
刘洋 [2 ]
陈桐 [3 ]
冷成财 [1 ]
李强 [4 ]
孙兆林 [4 ]
宋丽娟 [4 ]
机构
[1] School of Environment and Chemical Engineering,Nanchang Hangkong University
[2] Liaoning Key Laboratory of Petrochemical Catalytic Science and Technology,Liaoning Shihua University
[3] Sinopec Fushun Research Institute of Petroleum and Petrochemicals
[4] State Key Laboratory of Food Additive and Condiment Testing,Zhenjiang Entry-Exit Inspection Quarantine Bureau
基金
中国国家自然科学基金;
关键词
Li; Structural; Electrical; and Lithium Ion Dynamics of Li2MnO3 from Density Functional Theory; MnO;
D O I
暂无
中图分类号
TM912 [蓄电池];
学科分类号
0808 ;
摘要
The layered LiMnOis investigated by using the first-principles calculations within the GGA and GGA+U scheme,respectively.Within the GGA+U approach,the calculated intercalation voltage(ranges from 4.5 V to 4.9 V) is found to be in good agreement with experiments.From the analysis of electronic structure,the pure phase LiMnOis insulating,which is indicative of poor electronic-conduction properties.However,further studies of lithium ion diffusion in bulk LiMnOshow that unlike the two-dimensional diffusion pathways in rock salt structure layered cathode materials,lithium can diffuse in a three-dimensional pathway in LiMnO,with moderate lithium migration energy barrier ranges from 0.57 to 0.63 eV.
引用
收藏
页码:136 / 140
页数:5
相关论文
共 50 条
  • [31] Trigonal polymorph of Li2MnO3
    Xia, B.
    Cheng, J.
    Arengo, M.
    Rajput, N.
    Janssen, Y.
    Neilson, J. R.
    Persson, K. A.
    Simonson, J. W.
    PHYSICAL REVIEW MATERIALS, 2020, 4 (08)
  • [32] Understanding the Origin of Li2MnO3 Activation in Li-Rich Cathode Materials for Lithium-Ion Batteries
    Ye, Delai
    Zeng, Guang
    Nogita, Kazuhiro
    Ozawa, Kiyoshi
    Hankel, Marlies
    Searles, Debra J.
    Wang, Lianzhou
    ADVANCED FUNCTIONAL MATERIALS, 2015, 25 (48) : 7488 - 7496
  • [33] Nanostructured Li2MnO3: a disordered rock salt type structure for high energy density Li ion batteries
    Freire, M.
    Lebedev, O. I.
    Maignan, A.
    Jordy, C.
    Pralong, V.
    JOURNAL OF MATERIALS CHEMISTRY A, 2017, 5 (41) : 21898 - 21902
  • [34] Probing the Degradation Mechanism of Li2MnO3 Cathode for Li-Ion Batteries
    Yan, Pengfei
    Xiao, Liang
    Zheng, Jianming
    Zhou, Yungang
    He, Yang
    Zu, Xiaotao
    Mao, Scott X.
    Xiao, Jie
    Gao, Fei
    Zhang, Ji-Guang
    Wang, Chong-Min
    CHEMISTRY OF MATERIALS, 2015, 27 (03) : 975 - 982
  • [35] Structural Analysis of Li2MnO3 and Related Li-Mn-O Materials
    Yu, Denis Y. W.
    Yanagida, Katsunori
    JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2011, 158 (09) : A1015 - A1022
  • [36] Influence of Li2MnO3 Content on Structure and Electrochemistry of Lithium-Rich Layered Oxides for Li-Ion Batteries
    Tsai, Shu-Yi (willxkimo@yahoo.com.tw), 1600, Springer Science and Business Media Deutschland GmbH (1222 LNEE):
  • [37] Lithium metal rechargeable cells using Li2MnO3 as the positive electrode
    Kalyani, P
    Chitra, S
    Mohan, T
    Gopukumar, S
    JOURNAL OF POWER SOURCES, 1999, 80 (1-2) : 103 - 106
  • [38] Lithium metal rechargeable cells using Li2MnO3 as the positive electrode
    Kalyani, P.
    Chitra, S.
    Mohan, T.
    Gopukumar, S.
    Journal of Power Sources, 1999, 80 (01): : 103 - 106
  • [39] Molecular dynamics study on the Li diffusion mechanism and delithiation process of Li2MnO3
    Huang, Yang
    Liu, Long
    Gao, Min
    SOLID STATE IONICS, 2020, 346 (346)
  • [40] Synthesis and characterization of Li2MnO3 nanoparticles using sol-gel technique for lithium ion battery
    Chennakrishnan, Sandhiya
    Thangamuthu, Venkatachalam
    Subramaniyam, Akshaya
    Venkatachalam, Viknesh
    Venugopal, Manikandan
    Marudhan, Raju
    MATERIALS SCIENCE-POLAND, 2020, 38 (02): : 312 - 319