n-Gorenstein Projective Modules and Dimensions over Frobenius Extensions

被引:1
|
作者
Miao WANG [1 ]
Zhanping WANG [1 ]
机构
[1] Department of Mathematics, Northwest Normal University
基金
中国国家自然科学基金;
关键词
D O I
暂无
中图分类号
O153.3 [环论];
学科分类号
摘要
In this paper, we study n-Gorenstein projective modules over Frobenius extensions and n-Gorenstein projective dimensions over separable Frobenius extensions. Let R ? A be a Frobenius extension of rings and M any left A-module. It is proved that M is an n-Gorenstein projective left A-module if and only if A ?;M and Hom;(A, M) are n-Gorenstein projective left A-modules if and only if M is an n-Gorenstein projective left R-module. Furthermore, when R ? A is a separable Frobenius extension, n-Gorenstein projective dimensions are considered.
引用
收藏
页码:25 / 32
页数:8
相关论文
共 50 条
  • [21] (n, m)-STRONGLY GORENSTEIN PROJECTIVE MODULES
    Bennis, Driss
    INTERNATIONAL ELECTRONIC JOURNAL OF ALGEBRA, 2009, 6 : 119 - 133
  • [22] Frobenius functors, stable equivalences and K-theory of Gorenstein projective modules
    Ren, Wei
    JOURNAL OF ALGEBRA, 2022, 612 : 431 - 459
  • [23] Gorenstein projective modules over Milnor squares of rings
    Guo, Qianqian
    AIMS MATHEMATICS, 2024, 9 (10): : 28526 - 28541
  • [24] The Gorenstein-projective modules over a monomial algebra
    Chen, Xiao-Wu
    Shen, Dawei
    Zhou, Guodong
    PROCEEDINGS OF THE ROYAL SOCIETY OF EDINBURGH SECTION A-MATHEMATICS, 2018, 148 (06) : 1115 - 1134
  • [25] Gorenstein Projective Modules over Triangular Matrix Rings
    Eshraghi, H.
    Hafezi, R.
    Salarian, Sh.
    Li, Z. W.
    ALGEBRA COLLOQUIUM, 2016, 23 (01) : 97 - 104
  • [26] Gorenstein-Projective Modules over Morita Rings
    Asefa, Dadi
    ALGEBRA COLLOQUIUM, 2021, 28 (03) : 521 - 532
  • [27] Gorenstein projective modules over rings of Morita contexts
    Qianqian Guo
    Changchang Xi
    Science China(Mathematics), 2024, 67 (11) : 2453 - 2484
  • [28] Gorenstein projective modules over rings of Morita contexts
    Guo, Qianqian
    Xi, Changchang
    SCIENCE CHINA-MATHEMATICS, 2023, 67 (11) : 2453 - 2484
  • [29] Gorenstein-projective and semi-Gorenstein-projective modules
    Ringel, Claus Michael
    Zhang, Pu
    ALGEBRA & NUMBER THEORY, 2020, 14 (01) : 1 - 36
  • [30] -Gorenstein projective, -Gorenstein injective and -Gorenstein flat modules
    Zhang, Zhen
    Zhu, Xiaosheng
    Yan, Xiaoguang
    CHINESE ANNALS OF MATHEMATICS SERIES B, 2014, 35 (01) : 115 - 124