EXPERIMENTS TO TRACK STORMS USING MODERN OPTIMIZATION ALGORITHMS

被引:0
|
作者
李南 [1 ,2 ]
魏鸣 [1 ,3 ]
机构
[1] Key Laboratory of Meteorological Disaster of Ministry of Education,Nanjing University of Information Science & Technology
[2] School of Atmospheric Physics,Nanjing University of Information Science & Technology
[3] State Key Laboratory of Severe Weather,Chinese Academy of Meteorological Sciences
基金
高等学校博士学科点专项科研基金; 中国国家自然科学基金;
关键词
raw weather radar data; storm identification and tracking; optimization algorithms;
D O I
暂无
中图分类号
X703 [废水的处理与利用];
学科分类号
083002 ;
摘要
Storm identification and tracking based on weather radar data are essential to nowcasting and severe weather warning.A new two-dimensional storm identification method simultaneously seeking in two directions is proposed,and identification results are used to discuss storm tracking algorithms.Three modern optimization algorithms (simulated annealing algorithm,genetic algorithm and ant colony algorithm) are tested to match storms in successive time intervals.Preliminary results indicate that the simulated annealing algorithm and ant colony algorithm are effective and have intuitionally adjustable parameters,whereas the genetic algorithm is unsatisfactorily constrained by the mode of genetic operations.Experiments provide not only the feasibility and characteristics of storm tracking with modern optimization algorithms,but also references for studies and applications in relevant fields.
引用
收藏
页码:280 / 291
页数:12
相关论文
共 50 条
  • [31] Optimization of heat conduction using combinatorial optimization algorithms
    Xu Xianghua
    Liang Xingang
    Ren Jianxun
    INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER, 2007, 50 (9-10) : 1675 - 1682
  • [32] Generation of virtual track profiles using experiments and computer simulations
    Hejman, Marek
    Lukes, Vladimir
    JOURNAL OF THEORETICAL AND APPLIED MECHANICS, 2008, 46 (02) : 435 - 442
  • [33] OPTIMIZATION USING DISTRIBUTED GENETIC ALGORITHMS
    STARKWEATHER, T
    WHITLEY, D
    MATHIAS, K
    LECTURE NOTES IN COMPUTER SCIENCE, 1991, 496 : 176 - 185
  • [34] Metadomotic optimization using genetic algorithms
    Merino, S.
    Martinez, J.
    Guzman, F.
    APPLIED MATHEMATICS AND COMPUTATION, 2015, 267 : 170 - 178
  • [35] Structural optimization using evolutionary algorithms
    Lagaros, ND
    Papadrakakis, M
    Kokossalakis, G
    COMPUTERS & STRUCTURES, 2002, 80 (7-8) : 571 - 589
  • [36] The topology optimization using evolutionary algorithms
    Kokot, G
    Orantek, P
    IUTAM SYMPOSIUM ON EVOLUTIONARY METHODS IN MECHANICS, 2004, 117 : 173 - 186
  • [37] On the design of ILC algorithms using optimization
    Gunnarsson, S
    Norrlöf, M
    AUTOMATICA, 2001, 37 (12) : 2011 - 2016
  • [38] Multiobjective optimization using genetic algorithms
    Ashikaga Inst of Technology, Ashikaga, Japan
    J Eng Valuation Cost Analys, 4 (303-310):
  • [39] Process optimization using design of experiments
    Porter, Stuart C.
    Verseput, Richard P.
    Cunningham, Charles R.
    Pharmaceutical Technology, 1997, 21 (10):
  • [40] MEMS optimization using genetic algorithms
    Leu, G
    Simion, S
    Serbanescu, A
    2004 INTERNATIONAL SEMICONDUCTOR CONFERENCE, VOLS 1AND 2, PROCEEDINGS, 2004, : 475 - 478