Machine-learning-assisted prediction of surgical outcomes in patients undergoing gastrectomy

被引:0
|
作者
Sheng Lu [1 ]
Min Yan [1 ]
Chen Li [1 ]
Chao Yan [1 ]
Zhenggang Zhu [1 ]
Wencong Lu [2 ]
机构
[1] Department of General Surgery, Rui Jin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Institute of Digestive Surgery
[2] Department of Chemistry, College of Sciences, Shanghai University
关键词
Gastric cancer; postoperative complications; machine-learning models; support vector classification;
D O I
暂无
中图分类号
R656.6 [胃、十二指肠]; TP181 [自动推理、机器学习];
学科分类号
081104 ; 0812 ; 0835 ; 1002 ; 100210 ; 1405 ;
摘要
Objective: Postoperative complications adversely affected the prognosis in patients with gastric cancer. This study intends to investigate the feasibility of using machine-learning model to predict surgical outcomes in patients undergoing gastrectomy.Methods: In this study, cancer patients who underwent gastrectomy at Shanghai Rui Jin Hospital in 2017 were randomly assigned to a development or validation cohort in a 9:1 ratio. A support vector classification(SVC) model to predict surgical outcomes in patients undergoing gastrectomy was developed and further validated.Results: A total of 321 patients with 32 features were collected. The positive and negative outcomes of postoperative complication after gastrectomy appeared in 100(31.2%) and 221(68.8%) patients, respectively. The SVC model was constructed to predict surgical outcomes in patients undergoing gastrectomy. The accuracy of 10-fold cross validation and external verification was 78.17% and 78.12%, respectively. Further, an online web server has been developed to share the SVC model for machine-learning-assisted prediction of surgical outcomes in patients undergoing gastrectomy in the future procedures, which is accessible at the web address:http://47.100.47.97:5005/rodelrediction.Conclusions: The SVC model was a useful predictor for measuring the risk of postoperative complications after gastrectomy, which may help stratify patients with different overall status for choice of surgical procedure or other treatments. It can be expected that machine-learning models in cancer informatics research are possibly shareable and accessible via web address all over the world.
引用
收藏
页码:797 / 805
页数:9
相关论文
共 50 条
  • [21] Machine-Learning-Assisted Quantum Control in a Random Environment
    Huang, Tangyou
    Ban, Yue
    Sherman, E. Ya
    Chen, Xi
    PHYSICAL REVIEW APPLIED, 2022, 17 (02)
  • [22] Machine Learning and Surgical Outcomes Prediction: A Systematic Review
    Elfanagely, Omar
    Toyoda, Yoshilzo
    Othman, Sammy
    Mellia, Joseph A.
    Basta, Marten
    Liu, Tony
    Kording, Konrad
    Ungar, Lyle
    Fischer, John P.
    JOURNAL OF SURGICAL RESEARCH, 2021, 264 : 346 - 361
  • [23] Immune landscape-based machine-learning-assisted subclassification, prognosis, and immunotherapy prediction for glioblastoma
    Li, Haiyan
    He, Jian
    Li, Menglong
    Li, Kun
    Pu, Xuemei
    Guo, Yanzhi
    FRONTIERS IN IMMUNOLOGY, 2022, 13
  • [24] Machine-Learning-Assisted Intelligent Processing and Optimization of Complex Systems
    Luo, Xiong
    Yuan, Manman
    PROCESSES, 2023, 11 (09)
  • [25] Machine-learning-assisted materials discovery using failed experiments
    Paul Raccuglia
    Katherine C. Elbert
    Philip D. F. Adler
    Casey Falk
    Malia B. Wenny
    Aurelio Mollo
    Matthias Zeller
    Sorelle A. Friedler
    Joshua Schrier
    Alexander J. Norquist
    Nature, 2016, 533 : 73 - 76
  • [26] A Novel Algebraic Stress Model with Machine-Learning-Assisted Parameterization
    Jiang, Chao
    Mi, Junyi
    Laima, Shujin
    Li, Hui
    ENERGIES, 2020, 13 (01)
  • [27] Machine-Learning-Assisted Recognition on Bioinspired Soft Sensor Arrays
    Luo, Yang
    Xiao, Xiao
    Chen, Jun
    Li, Qian
    Fu, Hongyan
    ACS NANO, 2022, 16 (04) : 6734 - 6743
  • [28] Retrospective machine-learning-assisted analysis of the immune infiltrate in osteosarcoma
    Stupnicki, A. D.
    Oyesola, S.
    Ryan, L.
    Butters, T.
    Flanagan, A.
    JOURNAL OF PATHOLOGY, 2024, 264 : S36 - S36
  • [29] Machine-learning-assisted low dielectric constant polymer discovery†
    Liang, Jiechun
    Xu, Shangqian
    Hu, Linfeng
    Zhao, Yu
    Zhu, Xi
    MATERIALS CHEMISTRY FRONTIERS, 2021, 5 (10) : 3823 - 3829
  • [30] Machine-Learning-Assisted Design of Highly Tough Thermosetting Polymers
    Hu, Yaxi
    Zhao, Wenlin
    Wang, Liquan
    Lin, Jiaping
    Du, Lei
    ACS APPLIED MATERIALS & INTERFACES, 2022, 14 (49) : 55004 - 55016