Improved Ternary Subdivision Interpolation Scheme

被引:1
|
作者
王华维
秦开怀
机构
[1] China
[2] Beijing 100084
[3] Tsinghua University
[4] Department of Computer Science and Technology
基金
中国国家自然科学基金;
关键词
curve; interpolation; subdivision; ternary subdivision scheme;
D O I
暂无
中图分类号
TP391.41 [];
学科分类号
080203 ;
摘要
An improved ternary subdivision interpolation scheme was developed for computer graphics ap- plications that can manipulate open control polygons unlike the previous ternary scheme, with the resulting curve proved to be still C2-continuous. Parameterizations of the limit curve near the two endpoints are given with expressions for the boundary derivatives. The split joint problem is handled with the interpolating ter- nary subdivision scheme. The improved scheme can be used for modeling interpolation curves in computer aided geometric design systems, and provides a method for joining two limit curves of interpolating ternary subdivisions.
引用
收藏
页码:128 / 132
页数:5
相关论文
共 50 条
  • [41] An interpolating 4-point C2 ternary stationary subdivision scheme
    Hassan, MF
    Ivrissimitzis, IP
    Dodgson, NA
    Sabin, MA
    COMPUTER AIDED GEOMETRIC DESIGN, 2002, 19 (01) : 1 - 18
  • [42] Fractal range of a 3-point ternary interpolatory subdivision scheme with two parameters
    Zheng, Hongchan
    Ye, Zhenglin
    Chen, Zuoping
    Zhao, Hongxing
    CHAOS SOLITONS & FRACTALS, 2007, 32 (05) : 1838 - 1845
  • [43] Interpolatory ternary subdivision surfaces
    Li, GQ
    Ma, WY
    COMPUTER AIDED GEOMETRIC DESIGN, 2006, 23 (01) : 45 - 77
  • [44] Tuned ternary quad subdivision
    Ni, Tianyun
    Nasri, Ahmad H.
    GEOMETRIC MODELING AND PROCESSING - GMP 2006, PROCEEDINGS, 2006, 4077 : 441 - 450
  • [45] Ternary subdivision for quadrilateral meshes
    Ni, Tianyun
    Nasri, Ahmad H.
    Peter, Joerg
    COMPUTER AIDED GEOMETRIC DESIGN, 2007, 24 (06) : 361 - 370
  • [46] An approximating subdivision based on interpolating subdivision scheme
    Tan, Jieqing
    Tong, Guangyue
    Zhang, Li
    Jisuanji Fuzhu Sheji Yu Tuxingxue Xuebao/Journal of Computer-Aided Design and Computer Graphics, 2015, 27 (07): : 1162 - 1166
  • [47] On interpolatory subdivision from approximating subdivision scheme
    Luo, Zhongxuan
    Qi, Wanfeng
    APPLIED MATHEMATICS AND COMPUTATION, 2013, 220 : 339 - 349
  • [48] The PCHIP subdivision scheme
    Arandiga, F.
    Donat, R.
    Santagueda, M.
    APPLIED MATHEMATICS AND COMPUTATION, 2016, 272 : 28 - 40
  • [49] A tangent subdivision scheme
    Vanraes, Evelyne
    Bultheel, Adhemar
    ACM TRANSACTIONS ON GRAPHICS, 2006, 25 (02): : 340 - 355
  • [50] Butterfly subdivision scheme
    Proceedings of the Summer School in Numerical Analysis, 1992, 2