An Exact Solltary Wave Solutions for a New Derivative Nonlinear Schrodinger Equation

被引:0
|
作者
陈守信
吴瑞杰
机构
关键词
soliton; exact; letter; derivative; satisfy; 二土; 一革; 巴口; 三兰; 下乙;
D O I
暂无
中图分类号
O175 [微分方程、积分方程];
学科分类号
070104 ;
摘要
In this letter, an exact one-soliton solution for a new derivative nonlinear Schrodinger equation is obtained.
引用
收藏
页码:33 / 35
页数:3
相关论文
共 50 条
  • [21] DYNAMICAL BEHAVIOUR AND EXACT SOLUTIONS OF THIRTEENTH ORDER DERIVATIVE NONLINEAR SCHRODINGER EQUATION
    Leta, Temesgen Desta
    Li, Jibin
    [J]. JOURNAL OF APPLIED ANALYSIS AND COMPUTATION, 2018, 8 (01): : 250 - 271
  • [22] Abundant exact solutions to a generalized nonlinear Schrodinger equation with local fractional derivative
    Ghanbari, Behzad
    [J]. MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2021, 44 (11) : 8759 - 8774
  • [23] Exact solitary and periodic wave solutions for a generalized nonlinear Schrodinger equation
    Sun, Chengfeng
    Gao, Hongjun
    [J]. CHAOS SOLITONS & FRACTALS, 2009, 39 (05) : 2399 - 2410
  • [24] New exact solutions to the nonlinear Schrodinger equation with variable coefficients
    Guo, Qian
    Liu, Jing
    [J]. RESULTS IN PHYSICS, 2020, 16
  • [25] EXACT TRAVELLING WAVE SOLUTIONS FOR NONLINEAR SCHRODINGER EQUATION WITH VARIABLE COEFFICIENTS
    Liu, Xiuying
    [J]. JOURNAL OF APPLIED ANALYSIS AND COMPUTATION, 2017, 7 (04): : 1586 - 1597
  • [26] Some new exact solutions for derivative nonlinear Schrodinger equation with the quintic non-Kerr nonlinearity
    Korpinar, Zeliha
    Inc, Mustafa
    Bayram, Mustafa
    [J]. MODERN PHYSICS LETTERS B, 2020, 34 (06):
  • [27] BIFURCATIONS AND EXACT TRAVELING WAVE SOLUTIONS FOR THE GENERALIZED NONLINEAR SCHRODINGER EQUATION WITH WAVE OPERATOR
    Chen, Quting
    Shang, Yadong
    Di, Huafei
    [J]. JOURNAL OF APPLIED ANALYSIS AND COMPUTATION, 2022, 12 (01): : 336 - 346
  • [28] A Family of Exact Solutions for the Nonlinear Schrodinger Equation
    HUANG De bin
    [J]. Advances in Manufacturing, 2001, (04) : 273 - 275
  • [29] Exact solutions of a generalized nonlinear Schrodinger equation
    Zhang, Shaowu
    Yi, Lin
    [J]. PHYSICAL REVIEW E, 2008, 78 (02):
  • [30] Exact solutions of a nonlocal nonlinear Schrodinger equation
    Gao, Hui
    Xu, Tianzhou
    Yang, Shaojie
    Wang, Gangwei
    [J]. OPTOELECTRONICS AND ADVANCED MATERIALS-RAPID COMMUNICATIONS, 2016, 10 (9-10): : 651 - 657