On the Invariants of Mobius Groups M(R~n)

被引:0
|
作者
方爱农 [1 ]
机构
[1] Department of Mathematics, Hunan University, Changsha, China
基金
中国国家自然科学基金;
关键词
Th; R~n; On the Invariants of Mobius Groups M;
D O I
暂无
中图分类号
学科分类号
摘要
Suppose that g=[a b c d] is a Clifford matrix of dimension n, g(x)=(ax+b)(cx+d). We study the invariant balls and the more careful classifications of the loxodromic andparabolic elements in M(R~n), prove that the loxodromic elements in M(R) certainly havean invariant ball, expound the geometric meaning of Ahlfors’ hyperbolic elements, and introducethe uniformly hyperbolic and parabolic elements and give their identifications. We prove that (-2, 2), if g(x) is f.p.f, or elliptic,Re(a+d~*)∈{[-2, 2}, if g(x) is parabolic, (-∞, ∞), if g(x) is loxodromic. These results are fundamental in the higher dimensional Mbius groups, especially in Fuchsgroups.
引用
收藏
页码:119 / 128
页数:10
相关论文
共 50 条
  • [21] ON DISCRETENESS OF MOBIUS GROUPS
    Fu, Xi
    [J]. BULLETIN OF THE KOREAN MATHEMATICAL SOCIETY, 2013, 50 (03) : 747 - 752
  • [22] Differential and Integral Invariants Under Mobius Transformation
    Zhang, He
    Mo, Hanlin
    Hao, You
    Li, Qi
    Li, Hua
    [J]. PATTERN RECOGNITION AND COMPUTER VISION, PT III, 2018, 11258 : 280 - 291
  • [23] R-LINEAR ENDOMORPHISMS OF (R)N PRESERVING INVARIANTS
    MCDONALD, BR
    [J]. MEMOIRS OF THE AMERICAN MATHEMATICAL SOCIETY, 1983, 46 (287) : 1 - 67
  • [24] LIFTINGS OF MOBIUS GROUPS TO MATRIX GROUPS
    SEPPALA, M
    SORVALI, T
    [J]. MATHEMATICA SCANDINAVICA, 1993, 72 (02) : 223 - 234
  • [25] VECTOR INVARIANTS OF THE GROUPS GL(N,C[[T]]) AND SP(2M,C[[T]])
    RYBNIKOV, GL
    [J]. FUNCTIONAL ANALYSIS AND ITS APPLICATIONS, 1992, 26 (04) : 291 - 292
  • [26] Cohomological invariants and R-triviality of adjoint classical groups
    Grégory Berhuy
    Marina Monsurrò
    Jean-Pierre Tignol
    [J]. Mathematische Zeitschrift, 2004, 248 : 313 - 323
  • [27] Cohomological invariants and R-triviality of adjoint classical groups
    Berhuy, G
    Monsurro, M
    Tignol, JP
    [J]. MATHEMATISCHE ZEITSCHRIFT, 2004, 248 (02) : 313 - 323
  • [28] DISCRETENESS CRITERIA FOR MOBIUS GROUPS ACTING ON (R)over-barn II
    Li, Liu-Lan
    Wang, Xian-Tao
    [J]. BULLETIN OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 2009, 80 (02) : 275 - 290
  • [29] ON THE GROUPS pi(r)(V(n,m)) ND SPHERE-BUNDLES
    Whitehead, J. H. C.
    [J]. PROCEEDINGS OF THE LONDON MATHEMATICAL SOCIETY, 1945, 48 : 243 - 291
  • [30] Discreteness and convergence of Mobius groups
    Chen, M
    [J]. GEOMETRIAE DEDICATA, 2004, 104 (01) : 61 - 69