Magnesium stress corrosion cracking

被引:3
|
作者
N.Winzer [1 ]
A.Atrens [1 ,2 ]
W.Dietzel [3 ]
K.U.Kainer [3 ]
机构
[1] Materials Engineering,The University of Queensland,Brisbane,Australia
[2] Swiss Federal Laboratories for Materials Science and Technology,EMPA,Dept 136, überlandstrasse 129,CH-8600 Dubendorf,Switzerland
[3] GKSS-Forschungszentrum Geesthacht GmbH,Germany
关键词
stress corrosion cracking; linearly increasing stress test; LIST; CERT; hydrogen;
D O I
暂无
中图分类号
TG172.9 [其他腐蚀];
学科分类号
080503 ;
摘要
The significant positive green environment influence of magnesium alloy usage in transport could be compromised by catastrophic fast fracture caused by stress corrosion cracking(SCC). Transgranular stress corrosion cracking(TGSCC) of AZ91 was evaluated using the linearly increasing stress test(LIST) and the constant extension rate test(CERT). The TGSCC threshold stress was 55-75 MPa in distilled water and in 5 g/L NaCl. The TGSCC velocity was 7×10-10-5×10-9 m/s. A delayed hydride-cracking(DHC) model for TGSCC was implemented using a finite element script in MATLAB and the model predictions were compared with experiment. A key outcome is that,during steady state TGSCC propagation,a high dynamic hydrogen concentration is expected to build up behind the crack tip. A number of recommendations are given for preventing SCC of Mg alloys in service. One of the most important recommendations might be that the total stress in service(i.e. the stress from the service loading + the fabrication stress + the residual stress) should be below a threshold level,which,in the absence of other data,could be(conservatively) estimated to be about 50% of the tensile yield strength.
引用
收藏
页码:150 / 155
页数:6
相关论文
共 50 条
  • [21] Stress Corrosion Cracking in magnesium alloy AE44
    Sozanska, Maria
    Moscicki, Adrian
    OCHRONA PRZED KOROZJA, 2019, 62 (03): : 126 - 126
  • [22] Evaluation of the delayed hydride cracking mechanism for transgranular stress corrosion cracking of magnesium alloys
    Winzer, N.
    Atrens, A.
    Dietzel, W.
    Song, G.
    Kainer, K. U.
    MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2007, 466 (1-2): : 18 - 31
  • [23] Stress corrosion cracking behaviour of a surface-modified magnesium alloy
    Srinivasan, P. Bala
    Blawert, C.
    Dietzel, W.
    Kainer, K. U.
    SCRIPTA MATERIALIA, 2008, 59 (01) : 43 - 46
  • [24] Influencing factors and protective methods of stress corrosion cracking of magnesium alloys
    Zhang, Yong
    Xu, Yue
    Harbin Gongye Daxue Xuebao/Journal of Harbin Institute of Technology, 2009, 41 (06): : 87 - 89
  • [25] INVESTIGATION OF STRESS CORROSION CRACKING IN MAGNESIUM ALLOYS BY QUANTITATIVE FRACTOGRAPHY METHODS
    Sozanska, M.
    Moscicki, A.
    Chmiela, B.
    ARCHIVES OF METALLURGY AND MATERIALS, 2017, 62 (02) : 557 - 562
  • [26] Threshold stress intensity for stress corrosion cracking (KISCC) of a magnesium alloy in physiological environment
    Choudhary, Lokesh
    Raman, R. K. Singh
    LIGHT METALS TECHNOLOGY V, 2011, 690 : 487 - 490
  • [27] Influence of bovine serum albumin in Hanks' solution on the corrosion and stress corrosion cracking of a magnesium alloy
    Harandi, Shervin Eslami
    Banerjee, Parama Chakraborty
    Easton, Christopher D.
    Raman, R. K. Singh
    MATERIALS SCIENCE & ENGINEERING C-MATERIALS FOR BIOLOGICAL APPLICATIONS, 2017, 80 : 335 - 345
  • [28] A Review of Stress-Corrosion Cracking and Corrosion Fatigue of Magnesium Alloys for Biodegradable Implant Applications
    Sajjad Jafari
    Shervin Eslami Harandi
    R. K. Singh Raman
    JOM, 2015, 67 : 1143 - 1153
  • [29] A Review of Stress-Corrosion Cracking and Corrosion Fatigue of Magnesium Alloys for Biodegradable Implant Applications
    Jafari, Sajjad
    Harandi, Shervin Eslami
    Raman, R. K. Singh
    JOM, 2015, 67 (05) : 1143 - 1153
  • [30] Stress corrosion cracking
    Atrens, A
    Wang, ZF
    MATERIALS FORUM, 1995, 19 : 9 - 34