Measurement of lumber moisture content based on PCA and GS-SVM

被引:0
|
作者
Jiawei Zhang [1 ]
Wenlong Song [1 ]
Bin Jiang [2 ]
Mingbao Li [1 ]
机构
[1] Northeast Forestry University
[2] Harbin Research Institute of Electrical Instrument
基金
中央高校基本科研业务费专项资金资助;
关键词
Lumber moisture content(LMC); Principle component analysis(PCA); Grid search(GS); Support vector machine(SVM);
D O I
暂无
中图分类号
S781.33 [木材水分];
学科分类号
082902 ;
摘要
Lumber moisture content(LMC) is the important parameter to judge the dryness of lumber and the quality of wooden products.Nevertheless the data acquired are mostly redundant and incomplete because of the complexity of the course of drying,by interference factors that exist in the dryness environment and by the physical characteristics of the lumber itself.To improve the measuring accuracy and reliability of LMC,the optimal support vector machine(SVM) algorithm was put forward for regression analysis LMC.Environmental factors such as air temperature and relative humidity were considered,the data of which were extracted with the principle component analysis method.The regression and prediction of SVM was optimized based on the grid search(GS) technique.Groups of data were sampled and analyzed,and simulation comparison of forecasting performance shows that the main component data were extracted to speed up the convergence rate of the optimum algorithm.The GS-SVM shows a better performance in solving the LMC measuring and forecasting problem.
引用
收藏
页码:557 / 564
页数:8
相关论文
共 50 条
  • [21] Power line identification of millimeter wave radar based on PCA-GS-SVM
    Fang, Fang
    Zhang, Guifeng
    Cheng, Yansheng
    1ST INTERNATIONAL CONFERENCE ON FRONTIERS OF MATERIALS SYNTHESIS AND PROCESSING (FMSP 2017), 2017, 274
  • [22] ANN-based data fusion for lumber moisture content sensors
    Zhang, JW
    Cao, J
    Zhang, DY
    TRANSACTIONS OF THE INSTITUTE OF MEASUREMENT AND CONTROL, 2006, 28 (01) : 69 - 79
  • [23] Moisture content target optimization in lumber drying
    Elustondo, Diego
    Oliveira, Luiz
    WOOD MATERIAL SCIENCE & ENGINEERING, 2011, 6 (04) : 190 - 195
  • [24] In-Line Moisture Content Measurement of Kiln-Dried Lumber for Process Improvement
    Milota, Michael R.
    Duncan, Tim
    Wagner, Ed
    FOREST PRODUCTS JOURNAL, 2009, 59 (10) : 89 - 97
  • [25] 基于GS-SVM的膨胀土边坡防护工程健康预测模型
    汪磊
    谢彦初
    孙德安
    张磊
    刘传新
    徐永福
    中南大学学报(自然科学版), 2022, 53 (01) : 250 - 257
  • [26] Lifetime Prediction of Residual Current Circuit Breaker with Overcurrent Protection Based on GA-BP and GS-SVM Combined Model
    Liu, Guojin
    Zhao, Xingzhou
    Miao, Jianhua
    Wang, Ze
    Li, Xiang
    IEEJ TRANSACTIONS ON ELECTRICAL AND ELECTRONIC ENGINEERING, 2022, 17 (11) : 1590 - 1597
  • [27] 基于数据统计特性的GS-SVM电池峰值功率预测模型
    郑方丹
    姜久春
    陈坤龙
    韩智强
    娄婷婷
    孙丙香
    电力自动化设备, 2017, 37 (09) : 56 - 61
  • [28] 基于GS-SVM的光伏阵列积灰程度评估方法研究
    张逴
    李树成
    魏东
    刘素民
    易建波
    太阳能学报, 2024, 45 (11) : 220 - 226
  • [29] 基于GS-SVM的脑组织差分路径因子定量方法研究
    储宝
    黄尧
    倪敬书
    张持健
    李忠胜
    张元志
    董美丽
    王全福
    王霞
    王贻坤
    中国激光, 2022, 49 (05) : 223 - 229
  • [30] Microwave moisture measurement system for lumber drying
    Moschler, William W.
    Hanson, Gregory R.
    Gee, Timothy F.
    Killough, Stephen M.
    Wilgen, John B.
    FOREST PRODUCTS JOURNAL, 2007, 57 (10) : 69 - 74