Several sharp upper bounds for the largest laplacian eigenvalue of a graph

被引:0
|
作者
Tian-fei WANG Department of Mathematics
机构
关键词
Laplacian matrix; the largest eigenvalue; similar matrix;
D O I
暂无
中图分类号
O157.5 [图论];
学科分类号
070104 ;
摘要
Let K be the quasi-Laplacian matrix of a graph G and B be the adjacency matrix of the line graph of G,respectively.In this paper,we first present two sharp upper bounds for the largest Laplacian eigenvalue of G by applying the non-negative matrix theory to the similar matrix DKDand UBU,respectively,where D is the degree diagonal matrix of G and U=diag(d,d,:uv∈E(G)). And then we give another type of the upper bound in terms of the degree of the vertex and the edge number of G.Moreover,we determine all extremal graphs which achieve these upper bounds.Finally, some examples are given to illustrate that our results are better than the earlier and recent ones in some sense.
引用
收藏
页码:1755 / 1764
页数:10
相关论文
共 50 条
  • [31] The sharp upper bounds for the first positive eigenvalue of the Kohn–Laplacian on compact strictly pseudoconvex hypersurfaces
    Song-Ying Li
    Guijuan Lin
    Duong Ngoc Son
    Mathematische Zeitschrift, 2018, 288 : 949 - 963
  • [32] Two sharp upper bounds for the Laplacian eigenvalues
    Zhang, XD
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2004, 376 : 207 - 213
  • [33] Upper Bounds for the Laplacian Graph Eigenvalues
    Jiong Sheng LI Yong Liang PAN Department of Mathematics
    Acta Mathematica Sinica,English Series, 2004, 20 (05) : 803 - 806
  • [34] On upper bounds for Laplacian graph eigenvalues
    Zhu, Dongmei
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2010, 432 (11) : 2764 - 2772
  • [35] Upper Bounds for the Laplacian Graph Eigenvalues
    Jiong Sheng Li
    Yong Liang Pan
    Acta Mathematica Sinica, 2004, 20 : 803 - 806
  • [36] Upper bounds for the Laplacian graph eigenvalues
    Li, JS
    Pan, YL
    ACTA MATHEMATICA SINICA-ENGLISH SERIES, 2004, 20 (05) : 803 - 806
  • [37] A NEW UPPER BOUND ON THE LARGEST NORMALIZED LAPLACIAN EIGENVALUE
    Rojo, Oscar
    Soto, Ricardo L.
    OPERATORS AND MATRICES, 2013, 7 (02): : 323 - 332
  • [38] NEW UPPER BOUND ON THE LARGEST LAPLACIAN EIGENVALUE OF GRAPHS
    Taheri, Hassan
    Fath-Tabar, Gholam Hossein
    FACTA UNIVERSITATIS-SERIES MATHEMATICS AND INFORMATICS, 2020, 35 (02): : 533 - 540
  • [39] Lower bounds on the third smallest Laplacian eigenvalue of a graph
    Pan, YL
    Li, JS
    Hou, YP
    Merris, R
    LINEAR & MULTILINEAR ALGEBRA, 2001, 49 (03): : 209 - 218
  • [40] The lower bound of the second largest Laplacian eigenvalue on unicyclic graph
    Liu, Ying
    Wang, Shuangcheng
    2011 INTERNATIONAL CONFERENCE ON ECONOMIC AND INFORMATION MANAGEMENT (ICEIM 2011), 2011, : 34 - 36