Node2vec Representation for Clustering Journals and as A Possible Measure of Diversity

被引:1
|
作者
Zhesi Shen [1 ]
Fuyou Chen [1 ]
Liying Yang [1 ]
Jinshan Wu [2 ]
机构
[1] National Science Library, Chinese Academy of Sciences
[2] School of Systems Science, Beijing Normal University
基金
中国博士后科学基金;
关键词
Science mapping; Diversity; Graph embedding; Vector norm;
D O I
暂无
中图分类号
G237.5 [期刊编辑出版]; G353.1 [情报资料的分析和研究];
学科分类号
摘要
Purpose: To investigate the effectiveness of using node2 vec on journal citation networks to represent journals as vectors for tasks such as clustering, science mapping, and journal diversity measure.Design/methodology/approach: Node2 vec is used in a journal citation network to generate journal vector representations. Findings: 1. Journals are clustered based on the node2 vec trained vectors to form a science map. 2. The norm of the vector can be seen as an indicator of the diversity of journals. 3. Using node2 vec trained journal vectors to determine the Rao-Stirling diversity measure leads to a better measure of diversity than that of direct citation vectors.Research limitations: All analyses use citation data and only focus on the journal level.Practical implications: Node2 vec trained journal vectors embed rich information about journals, can be used to form a science map and may generate better values of journal diversity measures.Originality/value: The effectiveness of node2 vec in scientometric analysis is tested. Possible indicators for journal diversity measure are presented.
引用
收藏
页码:79 / 92
页数:14
相关论文
共 50 条
  • [41] SVDNVLDA: predicting lncRNA-disease associations by Singular Value Decomposition and node2vec
    Li, Jianwei
    Li, Jianing
    Kong, Mengfan
    Wang, Duanyang
    Fu, Kun
    Shi, Jiangcheng
    BMC BIOINFORMATICS, 2021, 22 (01)
  • [42] 基于node2vec的社交网络用户属性补全攻击
    裴杨
    瞿学鑫
    郭晓博
    段丁阳
    信息网络安全, 2017, (12) : 67 - 72
  • [43] MDSVDNV: predicting microbe-drug associations by singular value decomposition and Node2vec
    Tan, Huilin
    Zhang, Zhen
    Liu, Xin
    Chen, Yiming
    Yang, Zinuo
    Wang, Lei
    FRONTIERS IN MICROBIOLOGY, 2024, 14
  • [44] SVDNVLDA: predicting lncRNA-disease associations by Singular Value Decomposition and node2vec
    Jianwei Li
    Jianing Li
    Mengfan Kong
    Duanyang Wang
    Kun Fu
    Jiangcheng Shi
    BMC Bioinformatics, 22
  • [45] A Theoretical Analysis of DeepWalk and Node2vec for Exact Recovery of Community Structures in Stochastic Blockmodels
    Zhang, Yichi
    Tang, Minh
    IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2024, 46 (02) : 1065 - 1078
  • [46] A hybrid optimization approach for graph embedding: leveraging Node2Vec and grey wolf optimization
    Rabiei, Mahdi
    Fartash, Mahdi
    Nazari, Sara
    JOURNAL OF SUPERCOMPUTING, 2025, 81 (04):
  • [47] Internet Financial Fraud Detection Based on a Distributed Big Data Approach With Node2vec
    Zhou, Hangjun
    Sun, Guang
    Fu, Sha
    Wang, Linli
    Hu, Juan
    Gao, Ying
    IEEE ACCESS, 2021, 9 : 43378 - 43386
  • [48] N2VSCDNNR: A Local Recommender System Based on Node2vec and Rich Information Network
    Chen, Jinyin
    Wu, Yangyang
    Fan, Lu
    Lin, Xiang
    Zheng, Haibin
    Yu, Shanqing
    Xuan, Qi
    IEEE TRANSACTIONS ON COMPUTATIONAL SOCIAL SYSTEMS, 2019, 6 (03): : 456 - 466
  • [49] Potential microRNA-Disease Association Prediction Using Node2vec and Singular Value Decomposition
    Liu, Yunxia
    Lin, Jiazhen
    Liang, Pin
    Tian, Yayu
    He, Xuan
    IEEE ACCESS, 2024, 12 : 110563 - 110574
  • [50] 基于Node2vec和知识注意力机制的诊断预测
    李杭
    李维华
    陈伟
    杨仙明
    曾程
    计算机科学, 2021, 48(S2) (S2) : 630 - 637