Quantum Secure Multiparty Computation with Symmetric Boolean Functions

被引:0
|
作者
曹浩 [1 ,2 ]
马文平 [3 ]
刘鸽 [3 ]
吕良东 [3 ,4 ]
薛正远 [5 ,6 ]
机构
[1] Anhui Province Key Laboratory of Animal Nutritional Regulation and Health, School of Information and Network Engineering, Anhui Science and Technology University
[2] School of Mathematical Science, Huaibei Normal University
[3] State Key Laboratory of Integrated Service Networks, Xidian University
[4] Department of Basic Sciences, Air Force Engineering University
[5] Guangdong Provincial Key Laboratory of Quantum Engineering and Quantum Materials, and School of Physics and Telecommunication Engineering, South China Normal University
[6] Frontier Research Institute for Physics, South China Normal University
基金
中国国家自然科学基金; 国家重点研发计划;
关键词
D O I
暂无
中图分类号
TP309 [安全保密]; O413 [量子论];
学科分类号
070201 ; 081201 ; 0839 ; 1402 ;
摘要
We propose a class of n-variable Boolean functions which can be used to implement quantum secure multiparty computation.We also give an implementation of a special quantum secure multiparty computation protocol.An advantage of our protocol is that only 1 qubit is needed to compute the n-tuple pairwise AND function,which is more efficient comparing with previous protocols.We demonstrate our protocol on the IBM quantum cloud platform,with a probability of correct output as high as 94.63%.Therefore,our protocol presents a promising generalization in realization of various secure multipartite quantum tasks.
引用
收藏
页码:14 / 18
页数:5
相关论文
共 50 条
  • [41] Secure Multiparty Computation with Free Branching
    Goel, Aarushi
    Hall-Andersen, Mathias
    Hegde, Aditya
    Jain, Abhishek
    [J]. ADVANCES IN CRYPTOLOGY - EUROCRYPT 2022, PT I, 2022, 13275 : 397 - 426
  • [42] On the necessity of rewinding in secure multiparty computation
    Backes, Michael
    Mueller-Quade, Jorn
    Unruh, Dominique
    [J]. THEORY OF CRYPTOGRAPHY, PROCEEDINGS, 2007, 4392 : 157 - +
  • [43] Secure Multiparty Computation Using Secure Virtual Machines
    Miladinovic, Danko
    Milakovic, Adrian
    Vukasovic, Maja
    Stanisavljevic, Zarko
    Vuletic, Pavle
    [J]. ELECTRONICS, 2024, 13 (05)
  • [44] General secure multiparty computation - Preface
    Goldreich, O
    [J]. JOURNAL OF CRYPTOLOGY, 2000, 13 (01) : 1 - 7
  • [45] Secure Multiparty Computation Goes Live
    Bogetoft, Peter
    Christensen, Dan Lund
    Damgard, Ivan
    Geisler, Martin
    Jakobsen, Thomas
    Kroigaard, Mikkel
    Nielsen, Janus Dam
    Nielsen, Jesper Buns
    Nielsen, Jurt
    Pagter, Jakob
    Schwartzbach, Michael
    Toft, Tomas
    [J]. FINANCIAL CRYPTOGRAPHY AND DATA SECURITY, 2009, 5628 : 325 - +
  • [46] Secure Multiparty Computation with Sublinear Preprocessing
    Boyle, Elette
    Gilboa, Niv
    Ishai, Yuval
    Nof, Ariel
    [J]. ADVANCES IN CRYPTOLOGY - EUROCRYPT 2022, PT I, 2022, 13275 : 427 - 457
  • [47] Secure multiparty computation of a comparison problem
    Liu, Xin
    Li, Shundong
    Liu, Jian
    Chen, Xiubo
    Xu, Gang
    [J]. SPRINGERPLUS, 2016, 5
  • [48] Secure Multiparty Computation from SGX
    Bahmani, Raad
    Barbosa, Manuel
    Brasser, Ferdinand
    Portela, Bernardo
    Sadeghi, Ahmad-Reza
    Scerri, Guillaume
    Warinschi, Bogdan
    [J]. FINANCIAL CRYPTOGRAPHY AND DATA SECURITY, FC 2017, 2017, 10322 : 477 - 497
  • [49] On the Message Complexity of Secure Multiparty Computation
    Ishai, Yuval
    Mittal, Manika
    Ostrovsky, Rafail
    [J]. PUBLIC-KEY CRYPTOGRAPHY - PKC 2018, PT I, 2018, 10769 : 698 - 711
  • [50] Secure multiparty computation for comparator networks
    Morohashi, Gembu
    Chida, Koji
    Hirota, Keiichi
    Kikuchi, Hiroaki
    [J]. IEICE TRANSACTIONS ON FUNDAMENTALS OF ELECTRONICS COMMUNICATIONS AND COMPUTER SCIENCES, 2008, E91A (09) : 2349 - 2355