Clustering of Virtual Network Function Instances Oriented to Compatibility in 5G Network

被引:0
|
作者
Xiaolei Wang [1 ]
Lijun Xie [2 ]
Zhiqiang Qin [1 ]
Yunjie Chen [1 ]
机构
[1] National Digital Switching System Engineering & Technological Research Center
[2] Information and Navigation College
基金
国家高技术研究发展计划(863计划);
关键词
5G wireless communication; VNF instances; compatibility; hypergraph clustering; evolutionary game;
D O I
暂无
中图分类号
TN929.5 [移动通信];
学科分类号
080402 ; 080904 ; 0810 ; 081001 ;
摘要
Network functions virtualization(NFV) increases network flexibility and scalability by virtualizing network functions running on the general servers and opens the network innovations by outsourcing VNF instances in 5G networks.However,it leads to the incompatibility issue among different VNF instances,which makes operators difficult to determine which VNF instances to select for Service Function Chains(SFCs).In this paper,we divide VNF instances with high compatibility into clusters used for combining VNF instances in 5G networks.Firstly,we define compatibility among different VNF instances.Secondly,aiming to maximize compatibility of each cluster,we propose a novel hypergraph clustering model that divides the VNF instances into multiple clusters.Then,the hypergraph clustering model is transformed to an evolutionary game.Thus,the cluster establishing is transformed to the game equilibrium searching.Furthermore,we propose a discrete time high order replicator dynamic algorithm to find the game equilibrium.Finally,the simulation results show that the proposed approach can improve the quality of SFCs.
引用
收藏
页码:111 / 119
页数:9
相关论文
共 50 条
  • [1] Clustering of Virtual Network Function Instances Oriented to Compatibility in 5G Network
    Wang, Xiaolei
    Xie, Lijun
    Qin, Zhiqiang
    Chen, Yunjie
    [J]. CHINA COMMUNICATIONS, 2017, 14 (12) : 111 - 119
  • [2] Availability Comparison of 5G Virtual Network Function
    Mandal, Priyatosh
    Jain, Rekha
    Meena, Narendra Kumar
    Kumar, Vikas
    [J]. 2020 IEEE 3RD 5G WORLD FORUM (5GWF), 2020, : 31 - 35
  • [3] Study of Virtual Network Function Placement in 5G Cloud Radio Access Network
    Arzo, Sisay Tadesse
    Bassoli, Riccardo
    Granelli, Fabrizio
    Fitzek, Frank H. P.
    [J]. IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, 2020, 17 (04): : 2242 - 2259
  • [4] User Mobility-Aware Virtual Network Function Placement for Virtual 5G Network Infrastructure
    Taleb, Tarik
    Bagaa, Miloud
    Ksentini, Adlen
    [J]. 2015 IEEE INTERNATIONAL CONFERENCE ON COMMUNICATIONS (ICC), 2015, : 3879 - 3884
  • [5] A Matheuristic for Green and Robust 5G Virtual Network Function Placement
    Bauschert, Thomas
    D'Andreagiovanni, Fabio
    Kassler, Andreas
    Wang, Chenghao
    [J]. APPLICATIONS OF EVOLUTIONARY COMPUTATION, EVOAPPLICATIONS 2019, 2019, 11454 : 430 - 438
  • [6] Virtual network function reconfiguration in 5G networks: An optimization perspective
    Biallach, Hanane
    Bouhtou, Mustapha
    Kumbria, Kristina
    Nace, Dritan
    Tomaszewski, Artur
    [J]. NETWORKS, 2024, 83 (04) : 673 - 691
  • [7] Virtual Network Function Migration Algorithm Based on Reinforcement Learning for 5G Network Slicing
    Tang Lun
    Zhou Yu
    Tan Qi
    Wei Yannan
    Chen Qianbin
    [J]. JOURNAL OF ELECTRONICS & INFORMATION TECHNOLOGY, 2020, 42 (03) : 669 - 677
  • [8] Virtual Network Function Dynamic Deployment Algorithm Based on Prediction for 5G Network Slicing
    Tang Lun
    Zhou Yu
    Yang Youchao
    Zhao Guofan
    Chen Qianbi
    [J]. JOURNAL OF ELECTRONICS & INFORMATION TECHNOLOGY, 2019, 41 (09) : 2071 - 2078
  • [9] Optimal Virtual Network Function Deployment for 5G Network Slicing in a Hybrid Cloud Infrastructure
    De Domenico, Antonio
    Liu, Ya-Feng
    Yu, Wei
    [J]. IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, 2020, 19 (12) : 7942 - 7956
  • [10] Virtual Network Function Migration Algorithm Based on Reinforcement Learning for 5G Network Slicing
    Tang, Lun
    Zhou, Yu
    Tan, Qi
    Wei, Yannan
    Chen, Qianbin
    [J]. Dianzi Yu Xinxi Xuebao/Journal of Electronics and Information Technology, 2020, 42 (03): : 669 - 677