Poincaré and Logarithmic Sobolev Inequalities for Nearly Radial Measures

被引:0
|
作者
Patrick CATTIAUX [1 ]
Arnaud GUILLIN [2 ]
Li Ming WU [2 ]
机构
[1] Institut de Mathématiques de Toulouse,CNRS UMR 5219,Université Paul Sabatier
[2] Laboratoire de Mathématiques Blaise Pascal,CNRS UMR 6620,Université Clermont-Auvergne
关键词
D O I
暂无
中图分类号
O174.12 [测度论];
学科分类号
摘要
Poincaré inequality has been studied by Bobkov for radial measures, but few are known about the logarithmic Sobolev inequality in the radial case. We try to fill this gap here using different methods: Bobkov’s argument and super-Poincaré inequalities, direct approach via L1-logarithmic Sobolev inequalities. We also give various examples where the obtained bounds are quite sharp. Recent bounds obtained by Lee–Vempala in the log-concave bounded case are refined for radial measures.
引用
收藏
页码:1377 / 1398
页数:22
相关论文
共 50 条
  • [21] Noncommutative Logarithmic Sobolev Inequalities
    Jiao, Yong
    Luo, Sijie
    Zanin, Dmitriy
    Zhou, Dejian
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1600, 0 (01): : 2221-1691 - 2588-9222
  • [22] On Sobolev and logarithmic Sobolev inequalities for Markov semigroups
    Bakry, D
    NEW TRENDS IN STOCHASTIC ANALYSIS, 1997, : 43 - 75
  • [23] Lectures on logarithmic Sobolev inequalities
    Guionnet, A
    Zegarlinski, B
    SEMINAIRE DE PROBABILITIES XXXVI, 2003, 1801 : 1 - 134
  • [24] LOGARITHMIC SOBOLEV TRACE INEQUALITIES
    Feo, Filomena
    Posteraro, Maria Rosaria
    ASIAN JOURNAL OF MATHEMATICS, 2013, 17 (03) : 569 - 582
  • [25] GENERALIZATIONS OF LOGARITHMIC SOBOLEV INEQUALITIES
    Merker, Jochen
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES S, 2008, 1 (02): : 329 - 338
  • [26] Modified logarithmic Sobolev inequalities and transportation inequalities
    Gentil, I
    Guillin, A
    Miclo, L
    PROBABILITY THEORY AND RELATED FIELDS, 2005, 133 (03) : 409 - 436
  • [27] Modified logarithmic Sobolev inequalities and transportation inequalities
    Ivan Gentil
    Arnaud Guillin
    Laurent Miclo
    Probability Theory and Related Fields, 2005, 133 : 409 - 436
  • [28] A Generalization of Poincaré and Log-Sobolev Inequalities
    Feng-Yu Wang
    Potential Analysis, 2005, 22 (1) : 1 - 15
  • [29] On improved fractional Sobolev-Poincar, inequalities
    Dyda, Bartlomiej
    Ihnatsyeva, Lizaveta
    Vahakangas, Antti V.
    ARKIV FOR MATEMATIK, 2016, 54 (02): : 437 - 454
  • [30] A generalization of poincaré and log-Sobolev inequalities
    Wang F.-Y.
    Potential Analysis, 2005, 22 (1) : 1 - 15