Poincaré and Logarithmic Sobolev Inequalities for Nearly Radial Measures

被引:0
|
作者
Patrick CATTIAUX [1 ]
Arnaud GUILLIN [2 ]
Li Ming WU [2 ]
机构
[1] Institut de Mathématiques de Toulouse,CNRS UMR 5219,Université Paul Sabatier
[2] Laboratoire de Mathématiques Blaise Pascal,CNRS UMR 6620,Université Clermont-Auvergne
关键词
D O I
暂无
中图分类号
O174.12 [测度论];
学科分类号
摘要
Poincaré inequality has been studied by Bobkov for radial measures, but few are known about the logarithmic Sobolev inequality in the radial case. We try to fill this gap here using different methods: Bobkov’s argument and super-Poincaré inequalities, direct approach via L1-logarithmic Sobolev inequalities. We also give various examples where the obtained bounds are quite sharp. Recent bounds obtained by Lee–Vempala in the log-concave bounded case are refined for radial measures.
引用
收藏
页码:1377 / 1398
页数:22
相关论文
共 50 条
  • [1] Poincaré and Logarithmic Sobolev Inequalities for Nearly Radial Measures
    Patrick Cattiaux
    Arnaud Guillin
    Li Ming Wu
    Acta Mathematica Sinica, English Series, 2022, 38 : 1377 - 1398
  • [2] Poincare and Logarithmic Sobolev Inequalities for Nearly Radial Measures
    Cattiaux, Patrick
    Guillin, Arnaud
    Wu, Li Ming
    ACTA MATHEMATICA SINICA-ENGLISH SERIES, 2022, 38 (08) : 1377 - 1398
  • [3] Logarithmic Sobolev Inequalities for Information Measures
    Kitsos, Christos P.
    Tavoularis, Nikolaos K.
    IEEE TRANSACTIONS ON INFORMATION THEORY, 2009, 55 (06) : 2554 - 2561
  • [4] Logarithmic Sobolev inequalities for Moebius measures on spheres
    Barthe, Franck
    Ma, Yutao
    Zhang, Zhengliang
    FORUM MATHEMATICUM, 2018, 30 (01) : 1 - 13
  • [5] Logarithmic Sobolev inequalities for harmonic measures on spheres
    Barthe, Franck
    Ma, Yutao
    Zhang, Zhengliang
    JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 2014, 102 (01): : 234 - 248
  • [6] Interpolation Between Modified Logarithmic Sobolev and Poincaré Inequalities for Quantum Markovian Dynamics
    Bowen Li
    Jianfeng Lu
    Journal of Statistical Physics, 190
  • [7] On modified logarithmic Sobolev inequalities for Bernoulli and Poisson measures
    Bobkov, SG
    Ledoux, M
    JOURNAL OF FUNCTIONAL ANALYSIS, 1998, 156 (02) : 347 - 365
  • [8] Interpolation Between Modified Logarithmic Sobolev and Poincaré Inequalities for Quantum Markovian Dynamics
    Li, Bowen
    Lu, Jianfeng
    JOURNAL OF STATISTICAL PHYSICS, 2023, 190 (10)
  • [9] Clark formula and logarithmic Sobolev inequalities for Bernoulli measures
    Gao, FQ
    Privault, N
    COMPTES RENDUS MATHEMATIQUE, 2003, 336 (01) : 51 - 56
  • [10] Logarithmic Sobolev inequalities for mollified compactly supported measures
    Zimmermann, David
    JOURNAL OF FUNCTIONAL ANALYSIS, 2013, 265 (06) : 1064 - 1083