Joint semiparametric mean-covariance model in longitudinal study

被引:0
|
作者
MAO Jie & ZHU ZhongYi Department of Statistics
机构
基金
中国国家自然科学基金;
关键词
generalized estimating equation; kernel estimation; local linear regression; modified Cholesky decomposition; semiparametric varying-coefficient partially linear model;
D O I
暂无
中图分类号
O212.1 [一般数理统计];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Semiparametric regression models and estimating covariance functions are very useful for longitudinal study. To heed the positive-definiteness constraint, we adopt the modified Cholesky decomposition approach to decompose the covariance structure. Then the covariance structure is fitted by a semiparametric model by imposing parametric within-subject correlation while allowing the nonparametric variation function. We estimate regression functions by using the local linear technique and propose generalized estimating equations for the mean and correlation parameter. Kernel estimators are developed for the estimation of the nonparametric variation function. Asymptotic normality of the the resulting estimators is established. Finally, the simulation study and the real data analysis are used to illustrate the proposed approach.
引用
收藏
页码:145 / 164
页数:20
相关论文
共 50 条
  • [21] Semiparametric Bayesian Inference for Mean-Covariance Regression Models
    Yu, Han Jun
    Shen, Jun Shan
    Li, Zhao Nan
    Fang, Xiang Zhong
    [J]. ACTA MATHEMATICA SINICA-ENGLISH SERIES, 2017, 33 (06) : 748 - 760
  • [22] Semiparametric Bayesian inference for mean-covariance regression models
    Han Jun Yu
    Jun Shan Shen
    Zhao Nan Li
    Xiang Zhong Fang
    [J]. Acta Mathematica Sinica, English Series, 2017, 33 : 748 - 760
  • [23] Joint mean-covariance models with applications to longitudinal data: Unconstrained parameterisation
    Pourahmadi, M
    [J]. BIOMETRIKA, 1999, 86 (03) : 677 - 690
  • [24] Joint mean-covariance model in generalized partially linear varying coefficient models for longitudinal data
    Qin, Guoyou
    Mao, Jie
    Zhu, Zhongyi
    [J]. JOURNAL OF STATISTICAL COMPUTATION AND SIMULATION, 2016, 86 (06) : 1166 - 1182
  • [25] Bayesian Joint Semiparametric Mean–Covariance Modeling for Longitudinal Data
    Meimei Liu
    Weiping Zhang
    Yu Chen
    [J]. Communications in Mathematics and Statistics, 2019, 7 : 253 - 267
  • [26] Joint mean-covariance estimation via the horseshoe
    Li, Yunfan
    Datta, Jyotishka
    Craig, Bruce A.
    Bhadra, Anindya
    [J]. JOURNAL OF MULTIVARIATE ANALYSIS, 2021, 183
  • [27] On modelling mean-covariance structures in longitudinal studies
    Pan, JX
    Mackenzie, G
    [J]. BIOMETRIKA, 2003, 90 (01) : 239 - 244
  • [28] Subject-wise empirical likelihood inference for robust joint mean-covariance model with longitudinal data
    Lv, Jing
    Guo, Chaohui
    Wu, Jibo
    [J]. STATISTICS AND ITS INTERFACE, 2019, 12 (04) : 617 - 630
  • [29] Multivariate contaminated normal mixture regression modeling of longitudinal data based on joint mean-covariance model
    Niu, Xiaoyu
    Tian, Yuzhu
    Tang, Manlai
    Tian, Maozai
    [J]. STATISTICAL ANALYSIS AND DATA MINING, 2024, 17 (01)
  • [30] Regressograms and Mean-Covariance Models for Incomplete Longitudinal Data
    Garcia, Tanya P.
    Kohli, Priya
    Pourahmadi, Mohsen
    [J]. AMERICAN STATISTICIAN, 2012, 66 (02): : 85 - 91