LOCALIZATION THEOREM ON HAMILTONIAN GRAPHS

被引:0
|
作者
潘林强
张克民
周国飞
机构
关键词
Local condition; Hamilton cycle;
D O I
暂无
中图分类号
O411 [物理学的数学方法];
学科分类号
0701 ;
摘要
Let G be a 2-connected graph of order n(≥3). If I(u,v) ≥S(u,v) or max {d(u), d(v)} ≥n/2 for any two vertices u, v at distance two in an induced subgraph H1,3 or P3 of G, then G is hamiltonian. Here I(u, v) = |N(u) n N(v)|, S(n, v) denotes the number of edges of mtximum star containing u, v as an induced subgraph in G.
引用
收藏
页码:76 / 78
页数:3
相关论文
共 50 条
  • [31] Panpositionable Hamiltonian graphs
    Kao, Shin-Shin
    Lin, Cheng-Kuan
    Huang, Hua-Min
    Hsu, Lih-Hsing
    ARS COMBINATORIA, 2006, 81 : 209 - 223
  • [32] GRAPHS WITH HAMILTONIAN SQUARES
    UNDERGROUND, P
    DISCRETE MATHEMATICS, 1978, 21 (03) : 323 - 323
  • [33] Hamiltonian Kneser Graphs
    Ya-Chen Chen
    Z. Füredi
    Combinatorica, 2002, 22 : 147 - 149
  • [34] The Hamiltonian Numbers in Graphs
    Chang, Ting-Pang
    Tong, Li-Da
    ARS COMBINATORIA, 2015, 123 : 151 - 158
  • [35] HAMILTONIAN TOTAL GRAPHS
    FLEISCHN.H
    HOBBS, AM
    NOTICES OF THE AMERICAN MATHEMATICAL SOCIETY, 1973, 20 (05): : A477 - A477
  • [36] Kneser Graphs Are Hamiltonian
    Merino, Arturo
    Mutze, Torsten
    Namrata
    PROCEEDINGS OF THE 55TH ANNUAL ACM SYMPOSIUM ON THEORY OF COMPUTING, STOC 2023, 2023, : 963 - 970
  • [37] LOCALLY HAMILTONIAN GRAPHS
    KATONA, D
    KOSTOCHKA, A
    PYKH, Y
    STECHKIN, B
    MATHEMATICAL NOTES, 1989, 45 (1-2) : 25 - 29
  • [38] CHARACTERIZATION OF HAMILTONIAN GRAPHS
    HOEDE, C
    VELDMAN, HJ
    JOURNAL OF COMBINATORIAL THEORY SERIES B, 1978, 25 (01) : 47 - 53
  • [39] On hamiltonian Toeplitz graphs
    Heuberger, C
    DISCRETE MATHEMATICS, 2002, 245 (1-3) : 107 - 125
  • [40] HAMILTONIAN LINE GRAPHS
    BRUALDI, RA
    SHANNY, RF
    JOURNAL OF GRAPH THEORY, 1981, 5 (03) : 307 - 314