Branch-Activated Multi-Domain Convolutional Neural Network for Visual Tracking

被引:0
|
作者
陈一民 [1 ]
陆蓉蓉 [1 ]
邹一波 [1 ]
张燕辉 [1 ]
机构
[1] School of Computer Engineering and Science, Shanghai University
关键词
convolutional neural network(CNN); category-specific feature; group algorithm; branch activation method;
D O I
暂无
中图分类号
TP183 [人工神经网络与计算]; TP391.41 [];
学科分类号
080203 ; 081104 ; 0812 ; 0835 ; 1405 ;
摘要
Convolutional neural networks(CNNs) have been applied in state-of-the-art visual tracking tasks to represent the target. However, most existing algorithms treat visual tracking as an object-specific task. Therefore,the model needs to be retrained for different test video sequences. We propose a branch-activated multi-domain convolutional neural network(BAMDCNN). In contrast to most existing trackers based on CNNs which require frequent online training, BAMDCNN only needs offline training and online fine-tuning. Specifically, BAMDCNN exploits category-specific features that are more robust against variations. To allow for learning category-specific information, we introduce a group algorithm and a branch activation method. Experimental results on challenging benchmark show that the proposed algorithm outperforms other state-of-the-art methods. What’s more, compared with CNN based trackers, BAMDCNN increases tracking speed.
引用
收藏
页码:360 / 367
页数:8
相关论文
共 50 条
  • [21] A Visual Tracking Deep Convolutional Neural Network Accelerator
    Qin, Zhiyong
    Yu, Lixin
    [J]. PROCEEDINGS OF THE 2017 2ND INTERNATIONAL CONFERENCE ON AUTOMATION, MECHANICAL CONTROL AND COMPUTATIONAL ENGINEERING (AMCCE 2017), 2017, 118 : 493 - 499
  • [22] Detection based visual tracking with convolutional neural network
    Wang, Yong
    Luo, Xinbin
    Ding, Lu
    Fu, Shan
    Wei, Xian
    [J]. KNOWLEDGE-BASED SYSTEMS, 2019, 175 : 62 - 71
  • [23] Visual tracking using Siamese convolutional neural network with region proposal and domain specific updating
    Zhang, Han
    Ni, Weiping
    Yan, Weidong
    Wu, Junzheng
    Bian, Hui
    Xiang, Deliang
    [J]. NEUROCOMPUTING, 2018, 275 : 2645 - 2655
  • [24] Multi-domain convolutional neural network (MD-CNN) for radial reconstruction of dynamic cardiac MRI
    El-Rewaidy, Hossam
    Fahmy, Ahmed S.
    Pashakhanloo, Farhad
    Cai, Xiaoying
    Kucukseymen, Selcuk
    Csecs, Ibolya
    Neisius, Ulf
    Haji-Valizadeh, Hassan
    Menze, Bjoern
    Nezafat, Reza
    [J]. MAGNETIC RESONANCE IN MEDICINE, 2021, 85 (03) : 1195 - 1208
  • [25] Adaptive Tracking Algorithm for Aerial Small Targets Based on Multi-Domain Convolutional Neural Networks and Autoregression Model
    Lin S.
    Zheng Y.
    Lu X.
    Zeng J.
    [J]. 2017, Chinese Optical Society (37):
  • [26] Infrared target tracking algorithm based on multi-domain network
    Sun M.
    Zhou L.
    Gu J.
    Li P.
    [J]. Xi Tong Gong Cheng Yu Dian Zi Ji Shu/Systems Engineering and Electronics, 2021, 43 (05): : 1176 - 1183
  • [27] Multi-domain collaborative feature representation for robust visual object tracking
    Zhang, Jiqing
    Zhao, Kai
    Dong, Bo
    Fu, Yingkai
    Wang, Yuxin
    Yang, Xin
    Yin, Baocai
    [J]. VISUAL COMPUTER, 2021, 37 (9-11): : 2671 - 2683
  • [28] Multi-domain collaborative feature representation for robust visual object tracking
    Jiqing Zhang
    Kai Zhao
    Bo Dong
    Yingkai Fu
    Yuxin Wang
    Xin Yang
    Baocai Yin
    [J]. The Visual Computer, 2021, 37 : 2671 - 2683
  • [29] Multi-Domain Pose Network for Multi-Person Pose Estimation and Tracking
    Guo, Hengkai
    Tang, Tang
    Luo, Guozhong
    Chen, Riwei
    Lu, Yongchen
    Wen, Linfu
    [J]. COMPUTER VISION - ECCV 2018 WORKSHOPS, PT II, 2019, 11130 : 209 - 216
  • [30] Robust Online Visual Tracking with a Single Convolutional Neural Network
    Li, Hanxi
    Li, Yi
    Porikli, Fatih
    [J]. COMPUTER VISION - ACCV 2014, PT V, 2015, 9007 : 194 - 209