Science Letters:A minimax optimal control strategy for uncertain quasi-Hamiltonian systems

被引:0
|
作者
Yong WANG
机构
基金
中国国家自然科学基金;
关键词
Nonlinear quasi-Hamiltonian system; Minimax optimal control; Stochastic excitation; Uncertain disturbance; Stochastic averaging; Stochastic differential game;
D O I
暂无
中图分类号
TP13 [自动控制理论];
学科分类号
0711 ; 071102 ; 0811 ; 081101 ; 081103 ;
摘要
A minimax optimal control strategy for quasi-Hamiltonian systems with bounded parametric and/or external disturbances is proposed based on the stochastic averaging method and stochastic differential game. To conduct the system energy control,the partially averaged It? stochastic differential equations for the energy processes are first derived by using the stochastic averaging method for quasi-Hamiltonian systems. Combining the above equations with an appropriate performance index,the proposed strategy is searching for an optimal worst-case controller by solving a stochastic differential game problem. The worst-case disturbances and the optimal controls are obtained by solving a Hamilton-Jacobi-Isaacs(HJI) equation. Numerical results for a controlled and stochastically excited Duffing oscillator with uncertain disturbances exhibit the efficacy of the proposed control strategy.
引用
收藏
页码:950 / 954
页数:5
相关论文
共 50 条
  • [1] A minimax optimal control strategy for uncertain quasi-Hamiltonian systems
    Yong Wang
    Zu-guang Ying
    Wei-qiu Zhu
    [J]. Journal of Zhejiang University-SCIENCE A, 2008, 9 : 950 - 954
  • [2] A minimax optimal control strategy for uncertain quasi-Hamiltonian systems
    Wang, Yong
    Ying, Zu-guang
    Zhu, Wei-qiu
    [J]. JOURNAL OF ZHEJIANG UNIVERSITY-SCIENCE A, 2008, 9 (07): : 950 - 954
  • [3] A minimax optimal control strategy for partially observable uncertain quasi-Hamiltonian systems
    Feng, J.
    Ying, Z. G.
    Zhu, W. Q.
    [J]. INTERNATIONAL JOURNAL OF NON-LINEAR MECHANICS, 2012, 47 (10) : 1147 - 1153
  • [4] Stochastic minimax optimal control strategy for uncertain quasi-Hamiltonian systems using stochastic maximum principle
    R. C. Hu
    Z. G. Ying
    W. Q. Zhu
    [J]. Structural and Multidisciplinary Optimization, 2014, 49 : 69 - 80
  • [5] Stochastic minimax optimal control strategy for uncertain quasi-Hamiltonian systems using stochastic maximum principle
    Hu, R. C.
    Ying, Z. G.
    Zhu, W. Q.
    [J]. STRUCTURAL AND MULTIDISCIPLINARY OPTIMIZATION, 2014, 49 (01) : 69 - 80
  • [6] Stochastic Minimax Vibration Control for Uncertain Nonlinear Quasi-Hamiltonian Systems with Noisy Observations
    Ying, Zu-guang
    Hu, Rong-chun
    Huan, Rong-hua
    [J]. INTERNATIONAL JOURNAL OF ACOUSTICS AND VIBRATION, 2019, 24 (04): : 707 - 716
  • [7] A stochastic optimal control strategy for partially observable nonlinear quasi-Hamiltonian systems
    Ying, Z. G.
    Zhu, W. Q.
    [J]. JOURNAL OF SOUND AND VIBRATION, 2008, 310 (1-2) : 184 - 196
  • [8] A stochastically averaged optimal control strategy for quasi-Hamiltonian systems with actuator saturation
    Ying, Z. G.
    Zhu, W. Q.
    [J]. AUTOMATICA, 2006, 42 (09) : 1577 - 1582
  • [9] Optimal nonlinear feedback control of quasi-Hamiltonian systems
    Zhu, WQ
    Ying, ZG
    [J]. SCIENCE IN CHINA SERIES A-MATHEMATICS PHYSICS ASTRONOMY, 1999, 42 (11): : 1213 - 1219
  • [10] Optimal nonlinear feedback control of quasi-Hamiltonian systems
    朱位秋
    应祖光
    [J]. Science China Mathematics, 1999, (11) : 1213 - 1219