Optimal nonlinear feedback control of quasi-Hamiltonian systems

被引:0
|
作者
朱位秋
应祖光
机构
基金
中国国家自然科学基金;
关键词
nonlinear system; stochastic control; stochastic averaging method; stochastic dynamic programming; controlled diffusion process;
D O I
暂无
中图分类号
O232 [最优控制];
学科分类号
070105 ; 0711 ; 071101 ; 0811 ; 081101 ;
摘要
An innovative strategy for optimal nonlinear feedback control of linear or nonlinear stochastic dynamic systems is proposed based on the stochastic averaging method for quasi-Hamiltonian systems and stochastic dynamic programming principle. Feedback control forces of a system are divided into conservative parts and dissipative parts. The conservative parts are so selected that the energy distribution in the controlled system is as requested as possible. Then the response of the system with known conservative control forces is reduced to a controlled diffusion process by using the stochastic averaging method. The dissipative parts of control forces are obtained from solving the stochastic dynamic programming equation.
引用
收藏
页码:1213 / 1219
页数:7
相关论文
共 50 条
  • [1] Optimal nonlinear feedback control of quasi-Hamiltonian systems
    Weiqiu Zhu
    Zuguang Ying
    Science in China Series A: Mathematics, 1999, 42 : 1213 - 1219
  • [2] Optimal nonlinear feedback control of quasi-Hamiltonian systems
    朱位秋
    应祖光
    ScienceinChina,SerA., 1999, Ser.A.1999 (11) : 1213 - 1219
  • [3] Optimal nonlinear feedback control of quasi-Hamiltonian systems
    Zhu, WQ
    Ying, ZG
    SCIENCE IN CHINA SERIES A-MATHEMATICS PHYSICS ASTRONOMY, 1999, 42 (11): : 1213 - 1219
  • [4] Advances in research on nonlinear stochastic optimal control of quasi-Hamiltonian systems
    Zhu, W. (wqzhu@yahoo.com), 1600, Chinese Academy of Mechanics (43):
  • [5] A stochastic optimal control strategy for partially observable nonlinear quasi-Hamiltonian systems
    Ying, Z. G.
    Zhu, W. Q.
    JOURNAL OF SOUND AND VIBRATION, 2008, 310 (1-2) : 184 - 196
  • [6] A minimax optimal control strategy for uncertain quasi-Hamiltonian systems
    Wang, Yong
    Ying, Zu-guang
    Zhu, Wei-qiu
    JOURNAL OF ZHEJIANG UNIVERSITY-SCIENCE A, 2008, 9 (07): : 950 - 954
  • [7] A minimax optimal control strategy for uncertain quasi-Hamiltonian systems
    Yong Wang
    Zu-guang Ying
    Wei-qiu Zhu
    Journal of Zhejiang University-SCIENCE A, 2008, 9 : 950 - 954
  • [8] Optimal Vibration Control for Structural Quasi-Hamiltonian Systems with Noised Observations
    Ying, Zu-guang
    Hu, Rong-chun
    Huan, Rong-hua
    INTERNATIONAL JOURNAL OF ACOUSTICS AND VIBRATION, 2017, 22 (02): : 233 - 241
  • [9] A stochastically averaged optimal control strategy for quasi-Hamiltonian systems with actuator saturation
    Ying, Z. G.
    Zhu, W. Q.
    AUTOMATICA, 2006, 42 (09) : 1577 - 1582
  • [10] A minimax optimal control strategy for partially observable uncertain quasi-Hamiltonian systems
    Feng, J.
    Ying, Z. G.
    Zhu, W. Q.
    INTERNATIONAL JOURNAL OF NON-LINEAR MECHANICS, 2012, 47 (10) : 1147 - 1153