FURTHER EXTENSIONS OF SOME TRUNCATED HECKE TYPE IDENTITIES

被引:0
|
作者
张文静 [1 ]
机构
[1] School of Mathematics,Hunan University
基金
中央高校基本科研业务费专项资金资助; 中国国家自然科学基金;
关键词
D O I
暂无
中图分类号
O173 [无穷级数论(级数论)];
学科分类号
0701 ; 070101 ;
摘要
The main purpose of this paper is to generalize the study of the Hecke-Rogers type series,which are the extensions of truncated theorems obtained by Andrews,Merca,Wang and Yee.Our proofs rely heavily on the theory of Bailey pairs.
引用
收藏
页码:73 / 90
页数:18
相关论文
共 50 条
  • [21] Lattice extensions of Hecke algebras
    Marin, Ivan
    JOURNAL OF ALGEBRA, 2018, 503 : 104 - 120
  • [22] Hecke algebras of group extensions
    Baumgartner, U
    Foster, J
    Hicks, J
    Lindsay, H
    Maloney, B
    Raeburn, I
    Ramagge, J
    Richardson, S
    COMMUNICATIONS IN ALGEBRA, 2005, 33 (11) : 4135 - 4147
  • [23] ALLOWABLE CUT EFFECT - SOME FURTHER EXTENSIONS
    LUNDGREN, AL
    JOURNAL OF FORESTRY, 1973, 71 (06) : 357 - &
  • [24] The Pfaff/Cauchy derivative identities and Hurwitz type extensions
    Warren P. Johnson
    The Ramanujan Journal, 2007, 13 : 167 - 201
  • [25] Identities in representations of the Hecke algebra
    Loesch, S
    Zhou, YK
    Zuber, JB
    INTERNATIONAL JOURNAL OF MODERN PHYSICS A, 1997, 12 (24): : 4425 - 4443
  • [26] The Pfaff/Cauchy derivative identities and Hurwitz type extensions
    Johnson, Warren P.
    RAMANUJAN JOURNAL, 2007, 13 (1-3): : 167 - 201
  • [27] ON COMBINATORIAL EXTENSIONS OF ROGERS-RAMANUJAN TYPE IDENTITIES
    Goyal, Megha
    CONTRIBUTIONS TO DISCRETE MATHEMATICS, 2017, 12 (02) : 33 - 51
  • [28] Some Methods of Computing First Extensions Between Modules of Graded Hecke Algebras
    Chan, Kei Yuen
    ALGEBRAS AND REPRESENTATION THEORY, 2018, 21 (04) : 859 - 895
  • [29] Some Identities on Truncated Polynomials Associated with Degenerate Bell Polynomials
    T. Kim
    D. S. Kim
    Russian Journal of Mathematical Physics, 2021, 28 : 342 - 355
  • [30] Some Identities on Truncated Polynomials Associated with Degenerate Bell Polynomials
    Kim, T.
    Kim, D. S.
    RUSSIAN JOURNAL OF MATHEMATICAL PHYSICS, 2021, 28 (03) : 342 - 355