ON THE CONVERGENCE OF THE MODIFIED SZASZ-MIRAKJAN OPERATOR

被引:3
|
作者
Sun Xiehua China Institute of Metrology
机构
关键词
Th; Math; ON THE CONVERGENCE OF THE MODIFIED SZASZ-MIRAKJAN OPERATOR; lim;
D O I
暂无
中图分类号
O174 [函数论];
学科分类号
070104 ;
摘要
A necessary and sufficient condition of convergence for the modified Szasz-Mirakjan operator is estab-lished.
引用
收藏
页码:20 / 25
页数:6
相关论文
共 50 条
  • [21] Approximation by a generalization of Szasz-Mirakjan type operators
    Siddiqui, Mohammed Arif
    Gupta, Nandita
    [J]. STUDIA UNIVERSITATIS BABES-BOLYAI MATHEMATICA, 2020, 65 (04): : 575 - 583
  • [22] On the uniform weighted approximation by Szasz-Mirakjan operators
    Amanov, N.T.
    [J]. Analysis Mathematica, 1992, 18 (03)
  • [23] On the rate of convergence of a new q-Szasz-Mirakjan operator
    Radu, Cristina
    Tarabie, Saddika
    Veteleanu, Andreea
    [J]. STUDIA UNIVERSITATIS BABES-BOLYAI MATHEMATICA, 2011, 56 (02): : 527 - 535
  • [24] The saturation class for linear combinations of Szasz-Mirakjan operators
    Xie, Linsen
    Wang, Shuli
    Zhao, Kaifei
    [J]. INTERNATIONAL JOURNAL OF WAVELETS MULTIRESOLUTION AND INFORMATION PROCESSING, 2020, 18 (06)
  • [25] Further approximations on Durrmeyer modification of Szasz-Mirakjan operators
    Yadav, Rishikesh
    Meher, Ramakanta
    Mishra, Vishnu Narayan
    [J]. EUROPEAN JOURNAL OF PURE AND APPLIED MATHEMATICS, 2020, 13 (05): : 1306 - 1324
  • [26] ON THE APPROXIMATION OF CONTINUOUS-FUNCTIONS BY SZASZ-MIRAKJAN OPERATORS
    AMANOV, NT
    [J]. DOKLADY AKADEMII NAUK SSSR, 1987, 293 (01): : 11 - 14
  • [27] Local approximation results for Szasz-Mirakjan type operators
    Oezarslan, Mehmet Ali
    Duman, Oktay
    [J]. ARCHIV DER MATHEMATIK, 2008, 90 (02) : 144 - 149
  • [28] On a Kantorovich Variant of (p,q)-Szasz-Mirakjan Operators
    Mursaleen, M.
    Alotaibi, Abdullah
    Ansari, Khursheed J.
    [J]. JOURNAL OF FUNCTION SPACES, 2016, 2016
  • [29] 关于修正Szasz-Mirakjan算子的逼近
    姜功建
    [J]. 黑龙江农垦师专学报, 1994, (01) : 67 - 70
  • [30] THE VORONOVSKAJA TYPE THEOREM FOR AN EXTENSION OF SZASZ-MIRAKJAN OPERATORS
    Pop, Ovidiu
    Barbosu, Dan
    Miclaus, Dan
    [J]. DEMONSTRATIO MATHEMATICA, 2012, 45 (01) : 107 - 115