GOLOMB'S CONJECTURE IS TRUE FOR CERTAIN CLASSES OF FINITE FIELDS

被引:0
|
作者
张肇健
REED I.S.
机构
[1] Department of Electrical Engineering
[2] USA
[3] University of Southern California
关键词
root; GOLOMB’S CONJECTURE IS TRUE FOR CERTAIN CLASSES OF FINITE FIELDS;
D O I
暂无
中图分类号
学科分类号
摘要
Golomb recently made the following conjecture: In any finite field, GF(p~n), where p is a prime integer, there exist two primitive elements with a sum equal to one, the unit element of the field. The purpose of this note is to establish some special cases of Golomb’s conjecture. To achieve this, the following theorem is used. Theorem 1. Let c=φ(m) and let q,q,…,qbe the different prime divisors
引用
收藏
页码:1310 / 1312
页数:3
相关论文
共 50 条
  • [11] Isotopism and Isomorphism Classes of Certain Lie Algebras over Finite Fields
    O. J. Falcón
    R. M. Falcón
    J. Núñez
    Results in Mathematics, 2017, 71 : 167 - 183
  • [12] An analog of shemetkov's conjecture for fischer classes of finite groups
    Vorob'ev, S. N.
    Zalesskaya, E. N.
    SIBERIAN MATHEMATICAL JOURNAL, 2013, 54 (05) : 790 - 797
  • [13] Proof of Golomb's conjecture in Fq with Γπ-pseudorandom sequences
    Liu, Yonghong
    EUROPEAN JOURNAL OF PURE AND APPLIED MATHEMATICS, 2020, 13 (01): : 108 - 112
  • [14] Total Coloring Conjecture for Certain Classes of Graphs
    Vignesh, R.
    Geetha, J.
    Somasundaram, K.
    ALGORITHMS, 2018, 11 (10):
  • [15] The 1966 Gelfand-Kirillov conjecture is true after finite extensions of skew fields
    Sadetov, ST
    DOKLADY MATHEMATICS, 2005, 72 (03) : 969 - 973
  • [16] An analogue of Ruzsa's conjecture for polynomials over finite fields
    Bell, Jason P.
    Nguyen, Khoa D.
    JOURNAL OF COMBINATORIAL THEORY SERIES A, 2021, 178
  • [17] Littlewood–Paley Conjecture for Certain Classes of Analytic Functions
    Nak Eun Cho
    Virendra Kumar
    Bulletin of the Iranian Mathematical Society, 2021, 47 : 505 - 522
  • [18] Toida's Conjecture is True
    Dobson, Edward
    Morris, Joy
    ELECTRONIC JOURNAL OF COMBINATORICS, 2002, 9
  • [19] Is Zaremba's conjecture true?
    Kan, I. D.
    SBORNIK MATHEMATICS, 2019, 210 (03) : 364 - 416
  • [20] BOWEN'S ENTROPY-CONJUGACY CONJECTURE IS TRUE UP TO FINITE INDEX
    Boyle, Mike
    Buzzi, Jerome
    McGoff, Kevin
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2015, 143 (07) : 2991 - 2997