Exact Travelling Solutions of Discrete sine-Gordon Equation via Extended Tanh-Function Approach

被引:0
|
作者
DAI Chao-Qing~(1
机构
关键词
discrete sine-Gordon equation; exact travelling wave solution; extended tanh-function approach;
D O I
暂无
中图分类号
O411.1 [数学物理方法];
学科分类号
0701 ; 070104 ;
摘要
In this paper, we generalize the extended tanh-function approach, which was used to find new exact travelling wave solutions of nonlinear partial differential equations or coupled nonlinear partial differential equations, to nonlinear differential-difference equations. As illustration, two series of exact travelling wave solutions of the discrete sine-Gordon equation are obtained by means of the extended tanh-function approach.
引用
收藏
页码:23 / 27
页数:5
相关论文
共 50 条
  • [21] New Travelling Wave Solutions for Sine-Gordon Equation
    Sun, Yunchuan
    JOURNAL OF APPLIED MATHEMATICS, 2014,
  • [22] Travelling wave solutions of triple Sine-Gordon equation
    Liu, CS
    CHINESE PHYSICS LETTERS, 2004, 21 (12) : 2369 - 2371
  • [23] Some solutions of discrete sine-Gordon equation
    Xie, Fuding
    Ji, Min
    Zhao, Hong
    CHAOS SOLITONS & FRACTALS, 2007, 33 (05) : 1791 - 1795
  • [24] Exact Jacobian elliptic function solutions to the double sine-Gordon equation
    Fu, ZT
    Liu, SK
    Liu, SD
    ZEITSCHRIFT FUR NATURFORSCHUNG SECTION A-A JOURNAL OF PHYSICAL SCIENCES, 2005, 60 (05): : 301 - 312
  • [25] Bifurcations of travelling wave solutions for a general Sine-Gordon equation
    Meng, Q
    He, B
    Long, Y
    Rui, WG
    CHAOS SOLITONS & FRACTALS, 2006, 29 (02) : 483 - 489
  • [26] A family of interesting exact solutions of the sine-Gordon equation
    Huang, DB
    Liu, ZR
    Wang, LL
    CHINESE PHYSICS LETTERS, 2000, 17 (01) : 1 - 3
  • [27] Travelling wave solutions for the doubly dispersive equation using improved modified extended tanh-function method
    Ahmed, Manar S.
    Zaghrout, Afaf A. S.
    Ahmed, Hamdy M.
    ALEXANDRIA ENGINEERING JOURNAL, 2022, 61 (10) : 7987 - 7994
  • [28] CHAOS AND THE APPROACH TO EQUILIBRIUM IN A DISCRETE SINE-GORDON EQUATION
    GOEDDE, CG
    LICHTENBERG, AJ
    LIEBERMAN, MA
    PHYSICA D, 1992, 59 (1-3): : 200 - 225
  • [29] EXACT AND NUMERICAL-SOLUTIONS TO THE PERTURBED SINE-GORDON EQUATION
    LEVRING, OA
    SAMUELSEN, MR
    OLSEN, OH
    PHYSICA D, 1984, 11 (03): : 349 - 358
  • [30] Exact solutions and conservation laws for a nonisospectral sine-Gordon equation
    Ning, TK
    Zhang, DJ
    Chen, DY
    Deng, SF
    CHAOS SOLITONS & FRACTALS, 2005, 25 (03) : 611 - 620