SPECIAL DYNAMIC BEHAVIORS OF A TEMPORAL CHAOTIC SYSTEM

被引:0
|
作者
Mingxuan Zhang
机构
关键词
temporal chaotic system; intermittent chaos; chaotic attractor; perioddoubling bifurcations;
D O I
暂无
中图分类号
O415.5 [混沌理论];
学科分类号
070201 ;
摘要
When dynamic behaviors of temporal chaotic system are analyzed, we find that a temporal chaotic system has not only generic dynamic behaviors of chaotic reflection, but also has phenomena influencing two chaotic attractors by original values. Along with the system parameters changing to certain value, the system will appear a break in chaotic region, and jump to another orbit of attractors. When it is opposite that the system parameters change direction, the temporal chaotic system appears complicated chaotic behaviors.
引用
收藏
页码:101 / 109
页数:9
相关论文
共 50 条
  • [41] Chaotic behaviors of an in-plane tethered satellite system with elasticity
    Yu, B.S.
    Tang, Y.N.
    Ji, K.
    Acta Astronautica, 2022, 193 : 395 - 405
  • [42] DYNAMIC BEHAVIORS OF A DISCRETE COMMENSALISM SYSTEM
    Yalong Xue
    Fengde Chen
    Xiangdong Xie
    Rongyu Han
    Annals of Applied Mathematics, 2015, 31 (04) : 452 - 461
  • [43] Dynamic properties, Gaussian soliton and chaotic behaviors of general Degasperis–Procesi model
    Yue Kai
    Liuke Huang
    Nonlinear Dynamics, 2023, 111 : 8687 - 8700
  • [44] Novel Dynamic Behaviors in Fractional Chaotic Systems: Numerical Simulations with Caputo Derivatives
    Abdoon, Mohamed A.
    Elgezouli, Diaa Eldin
    Halouani, Borhen
    Abdelaty, Amr M. Y.
    Elshazly, Ibrahim S.
    Ailawalia, Praveen
    El-Qadeem, Alaa H.
    AXIOMS, 2024, 13 (11)
  • [45] Bifurcation analysis with chaotic attractor for a special case of jerk system
    Rasul, Tahsin, I
    Salih, Rizgar H.
    PHYSICA SCRIPTA, 2024, 99 (08)
  • [46] Dynamic analysis of an autonomous chaotic system with cubic nonlinearity
    Zhang, Mei
    Han, Qingtao
    OPTIK, 2016, 127 (10): : 4315 - 4319
  • [47] Parallel chaotic WR algorithms for discretized dynamic system
    Yuan, DJ
    DCABES 2002, PROCEEDING, 2002, : 96 - 99
  • [48] Dynamic Analysis of the Nonlinear Chaotic System with Multistochastic Disturbances
    Geng, Lingling
    Yu, Yongguang
    Zhang, Shuo
    JOURNAL OF APPLIED MATHEMATICS, 2014,
  • [49] IS CYGNUS-X-1 A CHAOTIC DYNAMIC SYSTEM
    UNNO, W
    YONEYAMA, T
    URATA, K
    MASAKI, I
    KONDO, M
    INOUE, H
    PUBLICATIONS OF THE ASTRONOMICAL SOCIETY OF JAPAN, 1990, 42 (02) : 269 - 278