Beurling type theorem on the Bergman space via the Hardy space of the bidisk

被引:0
|
作者
SUN ShunHua1 & ZHENG DeChao2 1 Institute of Mathematics
机构
基金
美国国家科学基金会; 中国国家自然科学基金;
关键词
Bergman space; Bergman shift; invariant subspaces; Hardy space;
D O I
暂无
中图分类号
O177 [泛函分析];
学科分类号
070104 ;
摘要
In this paper,by lifting the Bergman shift as the compression of an isometry on a subspace of the Hardy space of the bidisk,we give a proof of the Beurling type theorem on the Bergman space of Aleman,Richter and Sundberg(1996) via the Hardy space of the bidisk.
引用
收藏
页码:2517 / 2529
页数:13
相关论文
共 50 条
  • [21] Beurling Type Theorem on the Hilbert Space Generated by a Positive Sequence
    Chang Hui WU
    Zhi Jie WANG
    Tao YU
    Acta Mathematica Sinica,English Series, 2019, (09) : 1511 - 1519
  • [22] Beurling Type Theorem on the Hilbert Space Generated by a Positive Sequence
    Chang Hui Wu
    Zhi Jie Wang
    Tao Yu
    Acta Mathematica Sinica, English Series, 2019, 35 : 1511 - 1519
  • [23] The Beurling Theorem in Space–Time Algebras
    Othman Tyr
    Radouan Daher
    Bulletin of the Malaysian Mathematical Sciences Society, 2023, 46
  • [24] Pointwise multipliers from the Hardy space to the Bergman space
    Feldman, NS
    ILLINOIS JOURNAL OF MATHEMATICS, 1999, 43 (02) : 211 - 221
  • [26] KERNELS OF HANKEL OPERATORS ON THE HARDY SPACE OVER THE BIDISK
    Izuchi, Kei Ji
    Izuchi, Kou Hei
    Izuchi, Yuko
    BANACH JOURNAL OF MATHEMATICAL ANALYSIS, 2019, 13 (03): : 612 - 626
  • [27] Hilbert spaces contractively included in the Hardy space of the bidisk
    Alpay, D
    Bolotnikov, V
    Dijksma, A
    Rovnyak, J
    Sadosky, C
    COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 1998, 326 (12): : 1365 - 1370
  • [28] Operator theory in the Hardy space over the bidisk (ii)
    Yang, RW
    INTEGRAL EQUATIONS AND OPERATOR THEORY, 2002, 42 (01) : 99 - 124
  • [29] Hilbert Spaces Contractively Included in the Hardy Space of the Bidisk
    D. Alpay
    V. Bolotnikov
    A. Dijksma
    C. Sadosky
    Positivity, 2001, 5 : 25 - 50
  • [30] Operator theory in the Hardy space over the bidisk (I)
    Ronald G. Douglas
    Rongwei Yang
    Integral Equations and Operator Theory, 2000, 38 : 207 - 221