As the second-most-common cause of cancer death, colorectal cancer(CRC) has been recognized as one of the biggest health concerns in advanced countries. The 5-year survival rate for patients with early-stage CRC is significantly better than that for patients with CRC detected at a late stage. The primary target for CRC screening and prevention is advanced neoplasia, which includes both CRC itself,as well as benign but histologically advanced adenomas that are at increased risk for progression to malignancy. Prevention of CRC through detection of advanced adenomas is important. It is, therefore, necessary to develop more efficient detection methods to enable earlier detection and therefore better prognosis.Although a number of CRC diagnostic methods are currently used for early detection, including stool-based tests, traditional colonoscopy, etc., they have not shown optimal results due to several limitations. Hence, development of more reliable screening methods is required in order to detect the disease at an early stage. New screening tools also need to be able to accurately diagnose CRC and advanced adenoma, help guide treatment, and predict the prognosis along with being relatively simple and non-invasive. As part of such efforts, many proposals for the early detection of colorectal neoplasms have been introduced. For example, metabolomics, referring to the scientific study of the metabolism of living organisms, has been shown to be a possible approach for discovering CRCrelated biomarkers. In addition, a growing number of high-performance screening methodologies could facilitate biomarker identification. In the present,evidence-based review, the authors summarize the current state as recognized by the recent guideline recommendation from the American Cancer Society, US Preventive Services Task Force and the United States Multi-Society Task Force and discuss future direction of screening tools for colorectal cancer. Further, we highlight the most interesting publications on new screening tools, like molecular biomarkers and metabolomics, and discuss these in detail.