A MATHEMATICAL PROOF OF A PROBABILISTIC MODEL OF HARDY'S INEQUALITY

被引:0
|
作者
Prateek K [1 ]
机构
[1] Taleigao Plateau Goa University,India
关键词
random variables; uniform partition; Hardy’s inequality;
D O I
暂无
中图分类号
O178 [不等式及其他];
学科分类号
0701 ; 070101 ;
摘要
In this paper using an argument from [1],we prove one of the probabilistic version of Hardy’s inequality.
引用
收藏
页码:95 / 100
页数:6
相关论文
共 50 条
  • [21] Outgrowths of Hardy's inequality
    Arendt, Wolfgang
    Goldstein, Gisele Ruiz
    Goldstein, Jerome A.
    RECENT ADVANCES IN DIFFERENTIAL EQUATIONS AND MATHEMATICAL PHYSICS, 2006, 412 : 51 - +
  • [22] ON HARDY'S INTEGRAL INEQUALITY
    Oguntuase, James Adedayo
    Adeleke, Emmanuel Oyeyemi
    FACTA UNIVERSITATIS-SERIES MATHEMATICS AND INFORMATICS, 2005, 20 : 9 - 20
  • [23] Hardy's discrete inequality
    Handley, GD
    Koliha, JJ
    Pecaric, J
    MATHEMATICAL INEQUALITIES & APPLICATIONS, 2004, 7 (02): : 187 - 197
  • [24] A new proof of the Hardy-Rellich inequality in any dimension
    Cazacu, Cristian
    PROCEEDINGS OF THE ROYAL SOCIETY OF EDINBURGH SECTION A-MATHEMATICS, 2020, 150 (06) : 2894 - 2904
  • [25] Hardy's inequality on Hardy-Morrey spaces
    Ho, Kwok-Pun
    GEORGIAN MATHEMATICAL JOURNAL, 2019, 26 (03) : 405 - 413
  • [26] On weighted extensions of Carleman's inequality and hardy's inequality
    Hara, T
    Takahasi, SE
    MATHEMATICAL INEQUALITIES & APPLICATIONS, 2003, 6 (04): : 667 - 674
  • [27] New Strengthened Carleman's Inequality and Hardy's Inequality
    Haiping Liu
    Ling Zhu
    Journal of Inequalities and Applications, 2007
  • [28] New strengthened Carleman's inequality and Hardy's inequality
    Liu, Haiping P.
    Zhu, Ling
    JOURNAL OF INEQUALITIES AND APPLICATIONS, 2007,
  • [29] Proof of a Hardy and Littlewood's conjecture
    Essouabri, D
    COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 1999, 328 (07): : 557 - 562
  • [30] Hardy's inequality for Dirichlet forms
    Fitzsimmons, PJ
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2000, 250 (02) : 548 - 560