Numerical simulation of the Rayleigh-Taylor instability using the MPS method

被引:0
|
作者
CHENG HuiFang
机构
基金
中国国家自然科学基金;
关键词
the moving particle semi-implicit method; the Rayleigh-Taylor instability; numerical simulation;
D O I
暂无
中图分类号
O35 [流体力学];
学科分类号
080103 ; 080704 ;
摘要
In this paper,the two-dimensional Rayleigh-Taylor(RT) instability is directly simulated using the moving particle semiimplicit(MPS) method,which is based on the fully Lagrangian description.The objectives of this paper are to investigate preliminarily the effect of viscosity and finite size domain on the evolution of the RT instability.The simulation results demonstrate that(1) the mushroom-like vortex motions are formed in late time due to fluid viscosity,which give rise to the secondary shear flow instability,(2) the finite thickness of the fluid layer limits the development of the RT instability.The above results are consistent with the experiments and theoretical analyses.Meanwhile,the linear growth rate of the RT instability obtained from the numerical simulation is also in agreement with theoretical analyses.And the nonlinear threshold from the simulation result is comparable with the theoretical estimate.Two stages of the nonlinear evolution of the RT instability are revealed in the numerical simulation,nonlinear saturation and turbulent mixing.
引用
收藏
页码:2953 / 2959
页数:7
相关论文
共 50 条
  • [32] Direct Numerical Simulations of Rayleigh-Taylor instability
    Livescu, D.
    Wei, T.
    Petersen, M. R.
    13TH EUROPEAN TURBULENCE CONFERENCE (ETC13): CONVECTION, ROTATION, STRATIFICATION AND BUOYANCY EFFECTS, 2011, 318
  • [33] On the long time simulation of the Rayleigh-Taylor instability
    Lee, Hyun Geun
    Kim, Kyoungmin
    Kim, Junseok
    INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, 2011, 85 (13) : 1633 - 1647
  • [34] RAYLEIGH-TAYLOR INSTABILITY
    PLESSET, MS
    BULLETIN OF THE AMERICAN PHYSICAL SOCIETY, 1972, 17 (11): : 1095 - 1095
  • [35] RAYLEIGH-TAYLOR INSTABILITY
    BABENKO, KI
    PETROVICH, VI
    DOKLADY AKADEMII NAUK SSSR, 1979, 245 (03): : 551 - 554
  • [36] A numerical study of Rayleigh-Taylor instability for various Atwood numbers using ISPH method
    Rahmat, Amin
    Tofighi, Nima
    Yildiz, Mehmet
    PROGRESS IN COMPUTATIONAL FLUID DYNAMICS, 2018, 18 (05): : 267 - 276
  • [37] The Rayleigh-Taylor instability
    Piriz, A. R.
    Cortazar, O. D.
    Lopez Cela, J. J.
    Tahir, N. A.
    AMERICAN JOURNAL OF PHYSICS, 2006, 74 (12) : 1095 - 1098
  • [38] NUMERICAL-SIMULATION OF RAYLEIGH-TAYLOR INSTABILITY FOR SINGLE AND MULTIPLE SALT DIAPIRS
    ZALESKI, S
    JULIEN, P
    TECTONOPHYSICS, 1992, 206 (1-2) : 55 - 69
  • [39] Numerical analysis of the Rayleigh-Taylor instability in an electric field
    Yang, Qingzhen
    Li, Ben Q.
    Zhao, Zhengtuo
    Shao, Jinyou
    Xu, Feng
    JOURNAL OF FLUID MECHANICS, 2016, 792 : 397 - 434
  • [40] Numerical study of Rayleigh-Taylor instability by using smoothed particle hydrodynamics
    Yang Xiu-Feng
    Liu Mou-Bin
    ACTA PHYSICA SINICA, 2017, 66 (16)