Existence of Limit Cycles for a Cubic Kolmogorov System with a Hyperbolic Solution

被引:2
|
作者
沈伯骞
刘德明
机构
关键词
cubic kolmogorov system; central quadratic curve; limit cycle;
D O I
10.13447/j.1674-5647.2000.01.012
中图分类号
O231 [控制论(控制论的数学理论)];
学科分类号
070105 ; 0711 ; 071101 ; 0811 ; 081101 ;
摘要
This paper is concerned with a cubic Kolmogorov system with a solution of central quadratic curve which neither contacts with the coordinate axes, nor passes through the origin. The conclusion is that such a system may possess limit cycles.
引用
收藏
页码:91 / 95
页数:5
相关论文
共 50 条
  • [31] Center-focus problem and limit cycles bifurcations for a class of cubic Kolmogorov model
    Chaoxiong Du
    Wentao Huang
    Nonlinear Dynamics, 2013, 72 : 197 - 206
  • [32] Existence of limit cycles for real quadratic differential systems with an invariant cubic
    Chavarriga, J
    García, IA
    PACIFIC JOURNAL OF MATHEMATICS, 2006, 223 (02) : 201 - 218
  • [33] LIMIT-CYCLES AND HOPF BIFURCATIONS IN A KOLMOGOROV TYPE SYSTEM
    MURATORI, S
    RINALDI, S
    MODELING IDENTIFICATION AND CONTROL, 1989, 10 (02) : 91 - 99
  • [34] EXISTENCE OF MULTIPLE LIMIT CYCLES IN CHEN SYSTEM
    Wang, Qinlong
    Li, Jing
    Huang, Wentao
    JOURNAL OF APPLIED ANALYSIS AND COMPUTATION, 2012, 2 (04): : 441 - 447
  • [35] Existence and Uniquenes of Limit Cycles for a Polynomial System
    Liu Deming (Department of Mathematics
    NortheasternMathematicalJournal, 1999, (02) : 57 - 61
  • [36] Existence And Distribution Of Limit Cycles In A Hamiltonian System
    Tigan, Gheorghe
    APPLIED MATHEMATICS E-NOTES, 2006, 6 : 176 - 185
  • [37] Limit cycles in a general Kolmogorov model
    Huang, XC
    Zhu, LM
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2005, 60 (08) : 1393 - 1414
  • [38] Limit cycles for a cubic Hamiltonian system with lower perturbations
    Liu, Zheng-Rong
    Li, Shao-Yong
    PROCEEDINGS OF THE 5TH INTERNATIONAL CONFERENCE ON NONLINEAR MECHANICS, 2007, : 1526 - 1529
  • [39] Centers and Limit Cycles of a Generalized Cubic Riccati System
    Zhou, Zhengxin
    Romanovski, Valery G.
    Yu, Jiang
    INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2020, 30 (02):
  • [40] A cubic polynomial system with seven limit cycles at infinity
    Zhang, Qi
    Liu, Yirong
    APPLIED MATHEMATICS AND COMPUTATION, 2006, 177 (01) : 319 - 329