STABILITY OF RAREFACTION WAVE FOR A MACROSCOPIC MODEL DERIVED FROM THE VLASOV-MAXWELL-BOLTZMANN SYSTEM

被引:0
|
作者
黄咏婷 [1 ]
刘红霞 [2 ]
机构
[1] Department of Mathematics, City University of Hong Kong
[2] Department of Mathematics, Jinan University
基金
中国国家自然科学基金;
关键词
Vlasov-Maxwell-Boltzmann system; rarefaction wave; energy method;
D O I
暂无
中图分类号
O175 [微分方程、积分方程];
学科分类号
070104 ;
摘要
In this article, we are concerned with the nonlinear stability of the rarefaction wave for a one-dimensional macroscopic model derived from the Vlasov-Maxwell-Boltzmann system. The result shows that the large-time behavior of the solutions coincides with the one for both the Navier-Stokes-Poisson system and the Navier-Stokes system. Both the timedecay property of the rarefaction wave profile and the influence of the electromagnetic field play a key role in the analysis.
引用
收藏
页码:857 / 888
页数:32
相关论文
共 50 条
  • [41] Stability of rarefaction waves for the non-cutoff Vlasov-Poisson-Boltzmann system with physical boundary
    Deng, Dingqun
    NONLINEAR ANALYSIS-REAL WORLD APPLICATIONS, 2023, 71
  • [42] Global Hilbert Expansion for the Relativistic Vlasov–Maxwell–Boltzmann System
    Yan Guo
    Qinghua Xiao
    Communications in Mathematical Physics, 2021, 384 : 341 - 401
  • [43] Stability of Nonlinear Wave Patterns to the Bipolar Vlasov-Poisson-Boltzmann System
    Li, Hailiang
    Wang, Yi
    Yang, Tong
    Zhong, Mingying
    ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2018, 228 (01) : 39 - 127
  • [44] A sharp stability criterion for the Vlasov–Maxwell system
    Zhiwu Lin
    Walter A. Strauss
    Inventiones mathematicae, 2008, 173 : 497 - 546
  • [45] A STABILITY RESULT FOR THE RELATIVISTIC VLASOV-MAXWELL SYSTEM
    KRUSE, KO
    REIN, G
    ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 1992, 121 (02) : 187 - 203
  • [46] A sharp stability criterion for the Vlasov-Maxwell system
    Lin, Zhiwu
    Strauss, Walter A.
    INVENTIONES MATHEMATICAE, 2008, 173 (03) : 497 - 546
  • [47] STABILITY OF RAREFACTION WAVE FOR VISCOUS VASCULOGENESIS MODEL
    Liu, Qingqing
    Wu, Xiaoli
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B, 2022, 27 (12): : 7089 - 7108
  • [48] A TOY MODEL FOR THE RELATIVISTIC VLASOV-MAXWELL SYSTEM
    Ben-Artzi, Jonathan
    Pankavich, Stephen
    Zhang, Junyong
    KINETIC AND RELATED MODELS, 2022, 15 (03) : 341 - 354
  • [49] Stability of rarefaction wave for isentropic compressible Navier-Stokes-Maxwell equations
    Luo, Fangqi
    Yao, Huancheng
    Zhu, Changjiang
    NONLINEAR ANALYSIS-REAL WORLD APPLICATIONS, 2021, 59
  • [50] UNIFORM STABILITY ESTIMATE FOR THE VLASOV-POISSON-BOLTZMANN SYSTEM
    Wang, Hao
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2021, 41 (02) : 657 - 680