Towards 640 Gbit/s wavelength conversion based on nonlinear polarization rotation in a semiconductor optical amplifier

被引:0
|
作者
冯传奋 [1 ]
伍剑 [1 ]
张君毅 [1 ]
徐坤 [1 ]
林金桐 [1 ]
机构
[1] The Key Laboratory of Optical Communication and Lightwave Technologies of MOE,Beijing University of Posts and Telecommunications
关键词
all-optical wavelength conversion; nonlinear polarization rotation; semiconductor optical amplifier; ultra-fast carrier dynamics;
D O I
暂无
中图分类号
TN722 [放大器];
学科分类号
080902 ;
摘要
Taking into account ultra-fast carrier dynamics,this paper models 640 Gbit/s wavelength conversion scheme based on nonlinear polarization rotation (NPR) in a single semiconductor optical amplifier (SOA) and investigates the performance of this kind of wavelength conversion scheme in detail.In this model,two carrier temperature equations are introduced to substitute two energy density equations,which reduce the complexity of calculation in comparison with the previous model.The temporary gain and phase shift dynamics induced by ultra-short optical pulses are numerically simulated and the simulated results are qualitatively in good agreement with reported experimental results.Simulated results show that non-inverted and inverted 640 Gbit/s wavelength conversions based on NPR are achieved with clear open eye diagrams.To further investigate the performance of the non-inverted wavelength conversion scheme,the dependence of output extinction ratio (ER) on some key parameters used in simulation is illustrated.Furthermore,simulated analyses show that high performance non-inverted wavelength conversion based on NPR can be achieved by using a red-shifted filtering scheme.
引用
收藏
页码:1000 / 1007
页数:8
相关论文
共 50 条
  • [21] Nonlinear polarization rotation induced by ultrashort optical pulses in a semiconductor optical amplifier
    Yang, X
    Lenstra, D
    Khoe, GD
    Dorren, HJS
    OPTICS COMMUNICATIONS, 2003, 223 (1-3) : 169 - 179
  • [22] 40Gbit/s all-optical wavelength conversion with enhanced performance based on nonlinear polarization rotation (NPR) in SOA with AWG filtering
    Zhang, JY
    Wu, J
    Xu, K
    Lin, JT
    2005 IEEE LEOS ANNUAL MEETING CONFERENCE PROCEEDINGS (LEOS), 2005, : 63 - 64
  • [23] All-optical 1310 to 1550 nm wavelength conversion by utilising nonlinear polarisation rotation in semiconductor optical amplifier
    Turkiewicz, JP
    Khoe, GD
    de Waardt, H
    ELECTRONICS LETTERS, 2005, 41 (01) : 29 - 30
  • [24] All-optical high speed sampling based on nonlinear polarization rotation in a semiconductor optical amplifier
    Zhang, Q. S.
    Zhang, S. J.
    Huang, L.
    Tang, X. G.
    Li, H. P.
    Liu, Y.
    Liu, Y. Z.
    OPTOELECTRONIC DEVICES AND INTEGRATION II, 2008, 6838
  • [25] Polarization-independent wavelength conversion using a single semiconductor optical amplifier
    徐晓峰
    韦珏
    康智慧
    姜云
    朱卫中
    乔芸芸
    高锦岳
    Chinese Optics Letters, 2005, (02) : 110 - 112
  • [26] REGENERATIVE 20 GBIT/S WAVELENGTH CONVERSION AND DEMULTIPLEXING USING A SEMICONDUCTOR-LASER AMPLIFIER NONLINEAR LOOP MIRROR
    DAVIES, DAO
    ELLIS, AD
    SHERLOCK, G
    ELECTRONICS LETTERS, 1995, 31 (12) : 1000 - 1001
  • [27] Theoretical analysis of nonlinear polarization rotation influence on optical sampling in semiconductor optical amplifier
    Liu, Mao-tong
    Yang, Ai-ying
    Sun, Yu-nan
    OPTOELECTRONIC MATERIALS AND DEVICES II, 2007, 6782
  • [28] High extinction ratio wavelength conversion at 10Gbit/s using birefringence switching in semiconductor optical amplifier
    Wong, CS
    Tsang, HK
    ELECTRONICS LETTERS, 2002, 38 (16) : 897 - 898
  • [29] Power Equalization using Nonlinear Polarization Rotation in a Single Semiconductor Optical Amplifier
    Zhang, S. J.
    Zhang, Y. L.
    Zhang, K.
    Liu, S.
    Liu, Y. Z.
    Liu, Y.
    SEMICONDUCTOR LASERS AND APPLICATIONS IV, 2010, 7844
  • [30] Simulation of mode-locking by nonlinear polarization rotation in a semiconductor optical amplifier
    Li, Z
    Yang, X
    Tangdiongga, E
    Ju, H
    Khoe, GD
    Dorren, HJS
    Lenstra, D
    IEEE JOURNAL OF QUANTUM ELECTRONICS, 2005, 41 (06) : 808 - 816