APPLICATIONS OF FRACTIONAL EXTERIOR DIFFERENTIAL IN THREE-DIMENSIONAL SPACE

被引:0
|
作者
陈勇
闫振亚
张鸿庆
机构
[1] Dalian University of Technology Dalian 116024
[2] P.R.China
[3] Department of Applied Mathematics
[4] Dalian University of Technology
关键词
fractional differential form; Cartesian coordinate; spherical coordinate; cylindrical coordinate;
D O I
暂无
中图分类号
O175 [微分方程、积分方程];
学科分类号
070104 ;
摘要
A brief survey of fractional calculus and fractional differential forms was firstly given.The fractional exterior transition to curvilinear coordinate at the origin were discussed and the two coordinate transformations for the fractional differentials for three-dimensional Cartesian coordinates to spherical and cylindrical coordinates are obtained, respectively. In particular, for v=m=1 ,the usual exterior transformations, between the spherical coordinate and Cartesian coordinate, as well as the cylindrical coordinate and Cartesian coordinate, are found respectively, from fractional exterior transformation.
引用
收藏
页码:256 / 260
页数:5
相关论文
共 50 条
  • [21] Resistance of exterior three-dimensional walls to high velocity projectiles
    Numayr, Karim S.
    Al Rjoub, Yousef S.
    Qudah, Abdalla M.
    Bsisu, Khair Al-Deen I.
    COMPOSITES PART B-ENGINEERING, 2012, 43 (08) : 3431 - 3435
  • [22] State-space approach to three-dimensional generalized thermoelasticity with fractional order strain
    Youssef, Hamdy M.
    Al-Lehaibi, Eman A. N.
    MECHANICS OF ADVANCED MATERIALS AND STRUCTURES, 2019, 26 (10) : 878 - 885
  • [23] Method of Fundamental Solutions for Three-Dimensional Exterior Potential Flows
    Young, D. L.
    Chou, C. K.
    Chen, C. W.
    Lai, J. Y.
    Watson, D. W.
    JOURNAL OF ENGINEERING MECHANICS, 2016, 142 (11)
  • [25] On a Differential Equation with a Higher-Order Partial Derivative in Three-Dimensional Space
    E. A. Utkina
    Differential Equations, 2005, 41 : 733 - 738
  • [26] ON THE OSCILLATION OF THREE DIMENSIONAL α-FRACTIONAL DIFFERENTIAL SYSTEMS
    Chatzarakis, G. E.
    Deepa, M.
    Nagajothi, N.
    Sadhasivam, V.
    DYNAMIC SYSTEMS AND APPLICATIONS, 2018, 27 (04): : 873 - 893
  • [27] On a differential equation with a higher-order partial derivative in three-dimensional space
    Utkina, EA
    DIFFERENTIAL EQUATIONS, 2005, 41 (05) : 733 - 738
  • [28] Models of three-dimensional fractional topological insulators
    Maciejko, Joseph
    Qi, Xiao-Liang
    Karch, Andreas
    Zhang, Shou-Cheng
    PHYSICAL REVIEW B, 2012, 86 (23)
  • [29] Three-dimensional fractional-spin gravity
    Nicolas Boulanger
    Per Sundell
    Mauricio Valenzuela
    Journal of High Energy Physics, 2014
  • [30] Three-dimensional fractional-spin gravity
    Boulanger, Nicolas
    Sundell, Per
    Valenzuela, Mauricio
    JOURNAL OF HIGH ENERGY PHYSICS, 2014, (02):