Soft-Resolution Method of Six-Element Linguistic Truth-Valued Intuitionistic Fuzzy Propositional Logic

被引:0
|
作者
刘新 [1 ]
殷明娥 [1 ]
孙芳 [2 ]
邹丽 [2 ]
机构
[1] Mathematics College,Liaoning Normal University
[2] School of Computer and Information Technology,Liaoning Normal University
关键词
lattice implication; intuitionisitc propositional logic; resolution method;
D O I
10.19884/j.1672-5220.2010.02.004
中图分类号
TP181 [自动推理、机器学习];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In this paper,we construct a six-element intuitionistic linguistic truth-valued fuzzy propositional logic (6LTV-IP) based on the framework of linguistic truth-valued propositional logic,which can express both the comparable and incomparable truth values. Truth degree and falsity degree of intuitionistic fuzzy proposition are two truth values with linguistic hedge. With the concrete logic operation of 6LTV-IP,some special properties are obtained. Then based on (α,β)-complementary literals and (α,β)-similar literals,we propose a soft-resolution method of 6LTV-IP.
引用
下载
收藏
页码:135 / 138
页数:4
相关论文
共 46 条
  • [41] Approach for group decision making based on linguistic truth-valued intuitionistic fuzzy lattice
    Diao, Hongyue
    Cao, Yiming
    Xu, Yingying
    Zou, Li
    Deng, Ansheng
    JOURNAL OF INTELLIGENT & FUZZY SYSTEMS, 2020, 38 (01) : 895 - 904
  • [42] α-Quasi-Lock Semantic Resolution Method for Linguistic Truth-Valued Lattice-Valued Propositional Logic LV(nx2)P(X)
    Zhong, Xiaomei
    Liu, Jun
    Chen, Shuwei
    Xu, Yang
    FOUNDATIONS OF INTELLIGENT SYSTEMS (ISKE 2011), 2011, 122 : 159 - +
  • [43] APPROXIMATE REASONING METHOD IN LINGUISTIC TRUTH-VALUED FIRST-ORDER LOGIC SYSTEM
    Cui, Xiaosong
    Liu, Di
    Wen, Xin
    Zou, Li
    DECISION MAKING AND SOFT COMPUTING, 2014, 9 : 92 - 97
  • [44] a- Generalized Semantic Resolution Method in Linguistic Truth- valued Propositional Logic L V ( n ε 2) P(
    Zhang, Jiafeng
    Xu, Yang
    He, Xingxing
    INTERNATIONAL JOURNAL OF COMPUTATIONAL INTELLIGENCE SYSTEMS, 2014, 7 (01) : 160 - 171
  • [45] General Form of a-Ordered Linear Resolution Method for Lattice-Valued Logic System with Linguistic Truth-Values
    Xu, Weitao
    Xu, Yang
    2016 INTERNATIONAL CONFERENCE ON FUZZY THEORY AND ITS APPLICATIONS (IFUZZY), 2016,
  • [46] A unified algorithm for finding k\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$k$$\end{document}-IESFs in linguistic truth-valued lattice-valued propositional logic
    Xingxing He
    Yang Xu
    Jun Liu
    Shuwei Chen
    Soft Computing, 2014, 18 (11) : 2135 - 2147