The effects of the heating process and hot extrusion on the microstructure and properties of inconel 625 alloy were studied. The experimental results showed that the properties of Inconel 625 alloy could be improved through the heating process and hot extrusion concomitant with a reduced corrosion rate. The M23C6 carbide, generated in the heating process, was retained and distributed at the grain boundary during the process of hot extrusion, which had an important influence on both elongation and corrosion resistance. The improvement of the comprehensive properties of the material, as measured by a tensile test at room temperature, was correlated with the dissolution of segregation Nb. A typical ductile fracture changed to a cleavage fracture where secondary cracks could be clearly seen. With the increase of the extrusion ratio, the real extrusion temperature was higher, which led to more dissolution of the M23C6 carbide, decreased the number of secondary cracks, enhanced the effect of solid solution strengthening, and reduced the intergranular corrosion rate. Under the condition of a high extrusion ratio and a high extrusion speed, the less extrusion time made it possible to obtain organization with a smaller average grain size. Moreover, in this case, the M23C6 carbide and segregated Nb did not have enough time to diffuse. Thus all samples exhibited medium strengths and corrosion rates after extrusion.