WELL-POSEDNESS OF INITIAL VALUE PROBLEM FOR EULER EQUATIONS OF INVISCID COMPRESSIBLE ADIABATIC FLUID

被引:0
|
作者
王曰朋
机构
[1] Shanghai Institute of Applied Mathematics and Mechanics
[2] Shanghai 200072
[3] P.R.China
[4] Shanghai University
关键词
Euler equation; initial or boundary value problem; well-posedness; stratification theory;
D O I
暂无
中图分类号
O35 [流体力学];
学科分类号
080103 ; 080704 ;
摘要
The well-posedness of the initial value problem of the Euler equations was mainly discussed based on the stratification theory, and the necessary and sufficient conditions of well-posedness are presented for some representative initial or boundary value problem, thus the structure of solution space for local (exact) solution of the Euler equations is determined.Moreover the computation formulas of the analytical solution of the well-posed problem are also given.
引用
收藏
页码:865 / 871
页数:7
相关论文
共 50 条
  • [21] Well-posedness of initial value problems for singular parabolic equations
    Kersner, R
    Tesei, A
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2004, 199 (01) : 47 - 76
  • [22] Local well-posedness for the homogeneous Euler equations
    Zhong, Xin
    Wu, Xing-Ping
    Tang, Chun-Lei
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2011, 74 (11) : 3829 - 3848
  • [23] On the global well-posedness for the axisymmetric Euler equations
    Abidi, Hammadi
    Hmidi, Taoufik
    Keraani, Sahbi
    MATHEMATISCHE ANNALEN, 2010, 347 (01) : 15 - 41
  • [24] On the global well-posedness for the axisymmetric Euler equations
    Hammadi Abidi
    Taoufik Hmidi
    Sahbi Keraani
    Mathematische Annalen, 2010, 347 : 15 - 41
  • [25] Global well-posedness of helicoidal Euler equations
    Abidi, Hammadi
    Sakrani, Saoussen
    JOURNAL OF FUNCTIONAL ANALYSIS, 2016, 271 (08) : 2177 - 2214
  • [26] Initial Boundary Value Problem for Compressible Euler Equations with Damping
    Pan, Ronghua
    Zhao, Kun
    INDIANA UNIVERSITY MATHEMATICS JOURNAL, 2008, 57 (05) : 2257 - 2282
  • [27] A counterexample to well-posedness of entropy solutions to the compressible Euler system
    Chiodaroli, Elisabetta
    JOURNAL OF HYPERBOLIC DIFFERENTIAL EQUATIONS, 2014, 11 (03) : 493 - 519
  • [28] Global well-posedness of the compressible Euler with damping in Besov spaces
    Jiu, Quansen
    Zheng, Xiaoxin
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2012, 35 (13) : 1570 - 1586
  • [29] Ghost fluid method for inviscid compressible Euler equations
    Feng, Jian-Hu
    Cai, Li
    Xie, Wen-Xian
    Wang, Zhen-Hai
    Jisuan Lixue Xuebao/Chinese Journal of Computational Mechanics, 2006, 23 (04): : 496 - 501
  • [30] Local well-posedness of the three dimensional compressible Euler-Poisson equations with physical vacuum
    Gu, Xumin
    Lei, Zhen
    JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 2016, 105 (05): : 662 - 723