EXACT SOLUTIONS OF THE VARIABLE COEFFICIENT KdV AND SG TYPE EQUATIONS

被引:0
|
作者
LIU XIQIANG
机构
关键词
KdV equation; SG equation; exact solution.§1 Introduction;
D O I
暂无
中图分类号
O175 [微分方程、积分方程];
学科分类号
070104 ;
摘要
EXACTSOLUTIONSOFTHEVARIABLECOEFFICIENTKdVANDSGTYPEEQUATIONSLIUXIQIANGAbstract.Inthispaper,thevariablecoficientKdVequationwith...
引用
收藏
页码:27 / 32
页数:6
相关论文
共 50 条
  • [41] EXACT SOLUTION OF PERTURBED KDV EQUATION WITH VARIABLE DISSIPATION COEFFICIENT
    Demiray, H.
    APPLIED AND COMPUTATIONAL MATHEMATICS, 2017, 16 (01) : 12 - 16
  • [42] Some exact solutions of KdV equation with variable coefficients
    Latif, M. S. Abdel
    COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2011, 16 (04) : 1783 - 1786
  • [43] Exact solutions of a KdV equation hierarchy with variable coefficients
    Zhang, Sheng
    Xu, Bo
    Zhang, Hong-Qing
    INTERNATIONAL JOURNAL OF COMPUTER MATHEMATICS, 2014, 91 (07) : 1601 - 1616
  • [44] Exact Solutions for Generalized KdV Equation with Variable Coefficients
    Wang Jinzhi
    Chen Wanji
    Xiao Shengzhong
    Mei Jianqin
    INFORMATION-AN INTERNATIONAL INTERDISCIPLINARY JOURNAL, 2008, 11 (06): : 713 - 722
  • [45] Lie group classifications and exact solutions for two variable-coefficient equations
    Liu, Hanze
    Li, Jibin
    Liu, Lei
    APPLIED MATHEMATICS AND COMPUTATION, 2009, 215 (08) : 2927 - 2935
  • [46] Group analysis and exact solutions of a class of variable coefficient nonlinear telegraph equations
    Huang, Ding-Jiang
    Ivanova, Nataliya M.
    JOURNAL OF MATHEMATICAL PHYSICS, 2007, 48 (07)
  • [47] Group Classification and Exact Solutions of a Class of Variable Coefficient Nonlinear Wave Equations
    Huang Ding-Jiang
    Mei Jian-Qin
    Zhang Hong-Qing
    CHINESE PHYSICS LETTERS, 2009, 26 (05)
  • [48] Exact soliton solutions and soliton diffusion of two kinds of stochastic KdV equations with variable coefficients
    Wang, Yvye
    Li, Changzhao
    Wang, Chuanjian
    Shi, Jianping
    Liu, Zhangxiang
    PHYSICA SCRIPTA, 2023, 98 (11)
  • [49] New exact explicit solutions of the generalized KdV equations
    Senthilkumaran, M.
    Pandiaraja, D.
    Vaganan, B. Mayil
    APPLIED MATHEMATICS AND COMPUTATION, 2008, 202 (02) : 693 - 699
  • [50] General method and exact solutions to a generalized variable-coefficient two-dimensional KdV equation
    Chen, Y
    NUOVO CIMENTO DELLA SOCIETA ITALIANA DI FISICA B-BASIC TOPICS IN PHYSICS, 2005, 120 (03): : 295 - 302