Topological Entropy of a Graph Map

被引:0
|
作者
Tai Xiang SUN [1 ]
机构
[1] Guangxi Key Laboratory Cultivation Base of Cross-border E-commerce Intelligent Information Processing, Guangxi University of Finance and Economics
关键词
Topological entropy; periodic point; ω-limit set; recurrent point;
D O I
暂无
中图分类号
O157.5 [图论];
学科分类号
070104 ;
摘要
Let G be a graph and f : G → G be a continuous map. Denote by h(f), P(f), AP(f), R(f)and ω(x, f) the topological entropy of f, the set of periodic points of f, the set of almost periodic points of f, the set of recurrent points of f and the ω-limit set of x under f, respectively. In this paper,we show that the following statements are equivalent:(1) h(f) > 0.(2) There exists an x ∈ G such that ω(x, f) ∩ P(f) = ? and ω(x, f) is an infinite set.(3) There exists an x ∈ G such that ω(x, f)contains two minimal sets.(4) There exist x, y ∈ G such that ω(x, f)-ω(y, f) is an uncountable set and ω(y, f) ∩ω(x, f) = ?.(5) There exist an x ∈ G and a closed subset A ? ω(x, f) with f(A) ? A such that ω(x, f)-A is an uncountable set.(6) R(f)-AP(f) = ?.(7) f |P(f)is not pointwise equicontinuous.
引用
收藏
页码:194 / 208
页数:15
相关论文
共 50 条
  • [21] Topological entropy of continuous self-maps on a graph
    Juan Luis García Guirao
    Jaume Llibre
    Wei Gao
    Computational and Applied Mathematics, 2019, 38
  • [22] Topological entropy of continuous self-maps on a graph
    Garcia Guirao, Juan Luis
    Llibre, Jaume
    Gao, Wei
    COMPUTATIONAL & APPLIED MATHEMATICS, 2019, 38 (04):
  • [23] Topological entropy and the AF core of a graph C*-algebra
    Jeong, Ja A.
    Park, Gi Hyun
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2009, 354 (02) : 664 - 673
  • [24] Topological Entropy and Special α-Limit Points of Graph Maps
    Sun, Taixiang
    Su, Guangwang
    Liang, Hailan
    He, Qiuli
    DISCRETE DYNAMICS IN NATURE AND SOCIETY, 2011, 2011
  • [25] Topological entropy and AF subalgebras of graph C*-algebras
    Jeong, JA
    Park, GH
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2006, 134 (01) : 215 - 228
  • [26] Topological Structure of Non–wandering Set of a Graph Map
    Rong Bao Gu
    Tai Xiang Sun
    Ting Ting Zheng
    Acta Mathematica Sinica, 2005, 21 : 873 - 880
  • [27] Constant slope, entropy, and horseshoes for a map on a tame graph
    BARTOS, A. D. A. M.
    BOBOK, J. O. Z. E. F.
    PYRIH, P. A. V. E. L.
    ROTH, S. A. M. U. E. L.
    VEJNAR, B. E. N. J. A. M. I. N.
    ERGODIC THEORY AND DYNAMICAL SYSTEMS, 2020, 40 (11) : 2970 - 2994
  • [28] The plateau phenomenon in the topological entropy of the gap-tent map
    Hsu, LY
    PHYSICS LETTERS A, 2000, 271 (04) : 252 - 257
  • [29] An Upper Bound on Topological Entropy of the Bunimovich Stadium Billiard Map
    Cinc, Jernej
    Troubetzkoy, Serge
    JOURNAL OF STATISTICAL PHYSICS, 2023, 190 (08)
  • [30] Topological Entropy of a Factor Map Under Amenable Group Actions
    Yang, Zhongxuan
    Huang, Xiaojun
    Liu, Yu
    QUALITATIVE THEORY OF DYNAMICAL SYSTEMS, 2025, 24 (01)