Stabilization of nonlinear systems based on robust control Lyapunov function

被引:0
|
作者
蔡秀珊 [1 ]
韩正之 [2 ]
吕干云 [1 ]
机构
[1] College of Mathematics,Physics,and Information Engineering,Normal University
[2] School of Electric and Information Engineering,Shanghai Jiaotong University
关键词
structural uncertainty; nonlinear systems; robust control l.yapunov function; robustly;
D O I
暂无
中图分类号
TP13 [自动控制理论];
学科分类号
0711 ; 071102 ; 0811 ; 081101 ; 081103 ;
摘要
This paper deals with the robust stabilization problem for a class of nonlinear systems with structural uncertainty.Based on robust control l.yapunov function,a sufficient and necessary condition for a function to be a robust control Lyapunov function is given.From this condition,simply sufficient condition for the robust stabilization(robust practical stabilization)is deduced.Moreover,if the equilibrium of the closed-loop system is u-nique,the existence of such a robust control l.yapunov function will also imply robustly globally asymptotical stabilization.Then a continuous state feedback law can be constructed explicitly.The simulation shows the effectiveness of the method.
引用
收藏
页码:130 / 133
页数:4
相关论文
共 50 条
  • [1] Stabilization of nonlinear systems based on robust control Lyapunov function
    Cai, Xiu-Shan
    Han, Zheng-Zhi
    Lu, Gan-Yun
    [J]. 2007, Harbin Institute of Technology, P.O. Box 136, Harbin, 150001, China (14)
  • [2] Robust stabilization of nonlinear systems based on control Lyapunov function
    Cai Xiu-shan
    Han Zheng-zhi
    [J]. Proceedings of 2004 Chinese Control and Decision Conference, 2004, : 7 - 10
  • [3] A control Lyapunov function approach to robust stabilization of nonlinear systems
    McConley, MW
    Appleby, BD
    Dahleh, MA
    Feron, E
    [J]. PROCEEDINGS OF THE 1997 AMERICAN CONTROL CONFERENCE, VOLS 1-6, 1997, : 329 - 333
  • [4] Control Lyapunov function method for robust stabilization of multistable affine nonlinear systems
    Barroso, Nelson F. F.
    Ushirobira, Rosane
    Efimov, Denis
    [J]. INTERNATIONAL JOURNAL OF ROBUST AND NONLINEAR CONTROL, 2023, 33 (11) : 6354 - 6370
  • [5] Stabilization of nonlinear systems based on fuzzy Lyapunov function
    Tanaka, K
    Hori, T
    Taniguchi, T
    Wang, HO
    [J]. ADVANCED FUZZY-NEURAL CONTROL 2001, 2002, : 9 - 14
  • [6] Vector Control Lyapunov Function Based Stabilization of Nonlinear Systems in Predefined Time
    Singh, Bhawana
    Pal, Anil Kumar
    Kamal, Shyam
    Dinh, Thach Ngoc
    Mazenc, Frederic
    [J]. IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2023, 68 (08) : 4984 - 4989
  • [7] A control Lyapunov function approach to stabilization of nonlinear systems with H∞ control
    Sugie, T
    Urashima, T
    Fujimoto, K
    [J]. PROCEEDINGS OF THE 2000 AMERICAN CONTROL CONFERENCE, VOLS 1-6, 2000, : 2139 - 2143
  • [8] STABILIZATION OF NONLINEAR SYSTEMS WITH VARYING PARAMETER BY A CONTROL LYAPUNOV FUNCTION
    Kallel, Wajdi
    Kharrat, Thouraya
    [J]. KYBERNETIKA, 2017, 53 (05) : 853 - 867
  • [9] Stabilization of nonlinear stochastic systems using control Lyapunov function
    Boulanger, C
    [J]. PROCEEDINGS OF THE 36TH IEEE CONFERENCE ON DECISION AND CONTROL, VOLS 1-5, 1997, : 557 - 558
  • [10] Polytopic control Lyapunov functions for robust stabilization of a class of nonlinear systems
    McConley, MW
    Dahleh, MA
    Feron, E
    [J]. PROCEEDINGS OF THE 1997 AMERICAN CONTROL CONFERENCE, VOLS 1-6, 1997, : 416 - 419