electric propulsion;
MPD thruster;
magnetic nozzle;
RF ion heating;
D O I:
暂无
中图分类号:
V439.2 [];
学科分类号:
摘要:
A higher specific impulse and a larger thrust are required for a manned interplanetary space thruster. Prior to a realization of a fusion-plasma thruster, a magneto-plasma-dynamic arcjet (MPDA) powered by a fission reactor is one of the promising candidates for a manned Mars space thruster. The MPDA plasma is accelerated axially by a self-induced j × B force. Thrust performance of the MPDA is expected to increase by applying a magnetic nozzle instead of a solid nozzle. In order to get a much higher thruster performance, two methods have been investigated in the HITOP device, Tohoku University. One is to use a magnetic Laval nozzle in the vicinity of the MPDA muzzle for converting the high ion thermal energy to the axial flow energy. The other is to heat ions by use of an ICRF antenna in the divergent magnetic nozzle. It is found that by use of a small-sized Laval-type magnetic nozzle, the subsonic flow near the muzzle is converted to be supersonic through the magnetic Laval nozzle. A fast-flowing plasma
机构:
City Univ Hong Kong, Dept Math, Kowloon Tong, Hong Kong, Peoples R ChinaCity Univ Hong Kong, Dept Math, Kowloon Tong, Hong Kong, Peoples R China
Deng, Yu Hui
Wylie, Jonathan J.
论文数: 0引用数: 0
h-index: 0
机构:
City Univ Hong Kong, Dept Math, Kowloon Tong, Hong Kong, Peoples R China
New Jersey Inst Technol, Ctr Appl Math & Stat, Newark, NJ 07102 USACity Univ Hong Kong, Dept Math, Kowloon Tong, Hong Kong, Peoples R China
Wylie, Jonathan J.
Zhang, Qiang
论文数: 0引用数: 0
h-index: 0
机构:
City Univ Hong Kong, Dept Math, Kowloon Tong, Hong Kong, Peoples R ChinaCity Univ Hong Kong, Dept Math, Kowloon Tong, Hong Kong, Peoples R China