Lie Symmetries of Quasihomogeneous Polynomial Planar Vector Fields and Certain Perturbations

被引:0
|
作者
JavierCHAVARRIGA [1 ]
IsaacA.GARC?A [1 ]
机构
[1] Departament
关键词
Lie symmetries; Quasi-homogeneous systems; Planar vector fields;
D O I
暂无
中图分类号
O174.14 [多项式理论];
学科分类号
摘要
In this work we study Lie symmetries of planar quasihomogeneous polynomial vector fieldsfrom different points of view,showing its integrability.Additionally,we show that certain perturbationsof such vector fields which generalize the so-called degenerate infinity vector fields are also integrable.
引用
收藏
页码:185 / 192
页数:8
相关论文
共 50 条
  • [21] On planar polynomial vector fields with elementary first integrals
    Christopher, Colin
    Llibre, Jaume
    Pantazi, Chara
    Walcher, Sebastian
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2019, 267 (08) : 4572 - 4588
  • [22] Defining relations for classical Lie algebras of polynomial vector fields
    Leites, D
    Poletaeva, E
    MATHEMATICA SCANDINAVICA, 1997, 81 (01) : 5 - 19
  • [23] Orbital linearization around equilibria of vector fields in Rn and Lie symmetries
    Garcia, Isaac A.
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2013, 405 (01) : 111 - 115
  • [24] A note on the period function for certain planar vector fields
    Garijo, Antonio
    Gasull, Armengol
    Jarque, Xavier
    JOURNAL OF DIFFERENCE EQUATIONS AND APPLICATIONS, 2010, 16 (5-6) : 631 - 645
  • [25] Characterization and dynamics of certain classes of polynomial vector fields on the torus
    Jana, Supriyo
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2025, 542 (01)
  • [26] Realization problems for limit cycles of planar polynomial vector fields
    Margalef-Bentabol, Juan
    Peralta-Salas, Daniel
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2016, 260 (04) : 3844 - 3859
  • [27] Commuting planar polynomial vector fields for conservative Newton systems
    Nagloo, Joel
    Ovchinnikov, Alexey
    Thompson, Peter
    ACM COMMUNICATIONS IN COMPUTER ALGEBRA, 2018, 52 (03): : 59 - 62
  • [28] Commuting planar polynomial vector fields for conservative Newton systems
    Nagloo, Joel
    Ovchinnikov, Alexey
    Thompson, Peter
    COMMUNICATIONS IN CONTEMPORARY MATHEMATICS, 2020, 22 (04)
  • [29] The Bifurcation of the Equatorial Periodic Orbit of the Planar Polynomial Vector Fields
    Xin An Zhang
    Lan Sun Chen
    Zhao Jun Liang
    Acta Mathematica Sinica, 2001, 17 : 471 - 480
  • [30] The bifurcation of the equatorial periodic orbit of the planar polynomial vector fields
    Zhang, XA
    Chen, LS
    Liang, ZJ
    ACTA MATHEMATICA SINICA-ENGLISH SERIES, 2001, 17 (03) : 471 - 480