A Note on the Illposedness for Anisotropic Nonlinear Schrdinger Equation

被引:0
|
作者
Xiao Yi ZHANG Academy of Mathematics and Systems Science
机构
关键词
anisotropic Schrodinger equation; anisotropic Sobolev space; illposedness;
D O I
暂无
中图分类号
O175.29 [非线性偏微分方程];
学科分类号
摘要
In this short note,we show the illposedness of anisotropic Schr6dinger equation in L~2 if thegrowth of nonlinearity is larger than a threshold power pwhich is also the critical power for blowup,as Fibich,Ilan and Schochet have pointed out recently.The illposedness in anisotropic Sobolev spaceHwhere 0<s<s,s=d/2-k/4-2/(p-1),and the illposedness in Sobolev space of negative orderH~s,s<0 are also proved.
引用
收藏
页码:891 / 900
页数:10
相关论文
共 50 条
  • [41] A Stochastic Nonlinear Schrödinger Equation¶with Multiplicative Noise
    A. de Bouard
    A. Debussche
    Communications in Mathematical Physics, 1999, 205 : 161 - 181
  • [42] Singular solutions of the nonlocal nonlinear Schrödinger equation
    Bingwen Lin
    The European Physical Journal Plus, 137
  • [43] Optimal Control of a Nonlinear Stochastic Schrödinger Equation
    Diana Keller
    Journal of Optimization Theory and Applications, 2015, 167 : 862 - 873
  • [44] Explicit approximation for stochastic nonlinear Schrödinger equation
    Cui, Jianbo
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2025, 419 : 1 - 39
  • [45] Multiplicity of positive solutions of a nonlinear Schrödinger equation
    Yanheng Ding
    Kazunaga Tanaka
    manuscripta mathematica, 2003, 112 : 109 - 135
  • [46] On Multiwave Solutions of One Nonlinear Schrödinger Equation
    A. N. Volobuev
    Differential Equations, 2021, 57 : 711 - 717
  • [47] Chaoticons described by nonlocal nonlinear Schrödinger equation
    Lanhua Zhong
    Yuqi Li
    Yong Chen
    Weiyi Hong
    Wei Hu
    Qi Guo
    Scientific Reports, 7
  • [48] Norm inflation for the derivative nonlinear Schrödinger equation
    Wang, Yuzhao
    Zine, Younes
    COMPTES RENDUS MATHEMATIQUE, 2024, 362
  • [49] Dynamics of the Infinite Discrete Nonlinear Schrödinger Equation
    Vuoksenmaa, Aleksis
    JOURNAL OF STATISTICAL PHYSICS, 2024, 191 (12)
  • [50] Autoresonance excitation of a soliton of the nonlinear Schrödinger equation
    R. N. Garifullin
    Proceedings of the Steklov Institute of Mathematics, 2013, 281 : 59 - 63