Weighted and Maximally Hypoelliptic Estimates for the Fokker-Planck Operator with Electromagnetic Fields

被引:0
|
作者
Wei-Xi Li [1 ]
Juan Zeng [2 ]
机构
[1] School of Mathematics and Statistics, and Hubei Key Laboratory of Computational Science, Wuhan University
[2] School of Mathematics and Statistics, Wuhan University
关键词
D O I
暂无
中图分类号
O212.1 [一般数理统计];
学科分类号
摘要
We consider a Fokker-Planck operator with electric potential and electromagnetic fields. We establish the sharp weighted and subelliptic estimates, involving the control of the derivatives of electric potential and electromagnetic fields. Our proof relies on a localization argument as well as a careful calculation on commutators.
引用
收藏
页码:255 / 270
页数:16
相关论文
共 50 条
  • [41] Spectrum of the Fokker-Planck operator representing diffusion in a random velocity field
    Theoretical Physics, Oxford University, 1 Keble Road, Oxford
    OX1 3NP, United Kingdom
    不详
    NY
    10012, United States
    不详
    NY
    14853, United States
    Physical Review E - Statistical, Nonlinear, and Soft Matter Physics, 2000, 61 (01): : 196 - 203
  • [42] Orbit-averaged guiding-center Fokker-Planck operator
    Brizard, A. J.
    Decker, J.
    Peysson, Y.
    Duthoit, F. -X.
    PHYSICS OF PLASMAS, 2009, 16 (10)
  • [43] FUNDAMENTAL SOLUTION OF KINETIC FOKKER-PLANCK OPERATOR WITH ANISOTROPIC NONLOCAL DISSIPATIVITY
    Zhang, Xicheng
    SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2014, 46 (03) : 2254 - 2280
  • [44] Nonparametric Estimates of Drift and Diffusion Profiles via Fokker-Planck Algebra
    Lund, Steven P.
    Hubbard, Joseph B.
    Halter, Michael
    JOURNAL OF PHYSICAL CHEMISTRY B, 2014, 118 (44): : 12743 - 12749
  • [45] Harnack inequality and asymptotic lower bounds for the relativistic Fokker-Planck operator
    Anceschi, Francesca
    Polidoro, Sergio
    Rebucci, Annalaura
    JOURNAL OF EVOLUTION EQUATIONS, 2024, 24 (04)
  • [46] Wasserstein stability estimates for covariance-preconditioned Fokker-Planck equations
    Carrillo, J. A.
    Vaes, U.
    NONLINEARITY, 2021, 34 (04) : 2275 - 2295
  • [47] A posteriori error estimates for the Fokker-Planck and Fermi pencil beam equations
    Asadzadeh, M
    MATHEMATICAL MODELS & METHODS IN APPLIED SCIENCES, 2000, 10 (05): : 737 - 769
  • [48] FUNCTIONAL FOKKER-PLANCK TREATMENT OF ELECTROMAGNETIC FIELD PROPAGATION IN A THERMAL MEDIUM
    GRAHAM, R
    HAKEN, H
    ZEITSCHRIFT FUR PHYSIK, 1970, 234 (03): : 193 - +
  • [49] FOKKER-PLANCK EQUATIONS FOR CHARGED-PARTICLE TRANSPORT IN RANDOM FIELDS
    JOKIPII, JR
    ASTROPHYSICAL JOURNAL, 1972, 172 (02): : 319 - &
  • [50] Augmented Fokker-Planck equation for electron transport in arbitrary electric fields
    Bringuier, E
    JOURNAL OF APPLIED PHYSICS, 1999, 86 (12) : 6847 - 6851