Identifiability and Stability of an Inverse Problem Involving a Fredholm Equation

被引:0
|
作者
Carlos CONCA [1 ]
Rodrigo LECAROS [1 ]
Jaime H.ORTEGA [1 ]
Lionel ROSIER [2 ]
机构
[1] Centro de Modelamiento Matematico and Departamento de Ingenier?a Matematica, Universidad de Chile (UMI CNRS 2807) Avda Beauchef 851, Edificio Norte, Casilla 170-3, Correo 3, Santiago 8370459,Chile2. Centre Automatique et Systemes, MINES Paris Tech, PSL Res
关键词
Inverse problems; Olfactory system; Kernel determination; Fredholm integral equation; Partial differential equations; Numerical reconstruction;
D O I
暂无
中图分类号
O175 [微分方程、积分方程];
学科分类号
070104 ;
摘要
The authors study a linear inverse problem with a biological interpretation,which is modelled by a Fredholm integral equation of the first kind, where the kernel is represented by step functions. Based on different assumptions, identifiability, stability and reconstruction results are obtained.
引用
收藏
页码:737 / 762
页数:26
相关论文
共 50 条
  • [1] Identifiability and stability of an inverse problem involving a Fredholm equation
    Carlos Conca
    Rodrigo Lecaros
    Jaime H. Ortega
    Lionel Rosier
    Chinese Annals of Mathematics, Series B, 2015, 36 : 737 - 762
  • [2] Identifiability and Stability of an Inverse Problem Involving a Fredholm Equation
    Conca, Carlos
    Lecaros, Rodrigo
    Ortega, Jaime H.
    Rosier, Lionel
    CHINESE ANNALS OF MATHEMATICS SERIES B, 2015, 36 (05) : 737 - 762
  • [3] On the stability of an inverse problem for the wave equation
    Bao, Gang
    Yun, Kihyun
    INVERSE PROBLEMS, 2009, 25 (04)
  • [4] GLOBAL IDENTIFIABILITY FOR AN INVERSE PROBLEM FOR THE SCHRODINGER-EQUATION IN A MAGNETIC-FIELD
    NAKAMURA, G
    SUN, ZQ
    UHLMANN, G
    MATHEMATISCHE ANNALEN, 1995, 303 (03) : 377 - 388
  • [5] Stability for an inverse source problem of the diffusion equation
    Yao, Xiaohua
    Zhao, Yue
    PHYSICA SCRIPTA, 2023, 98 (01)
  • [6] Increasing stability in an inverse problem for the acoustic equation
    Nagayasu, Sei
    Uhlmann, Gunther
    Wang, Jenn-Nan
    INVERSE PROBLEMS, 2013, 29 (02)
  • [7] Stability and reconstruction for an inverse problem for the heat equation
    Bryan, K
    Caudill, LF
    INVERSE PROBLEMS, 1998, 14 (06) : 1429 - 1453
  • [8] Uniqueness and stability in an inverse problem for the Schrodinger equation
    Baudouin, L
    Puel, JP
    INVERSE PROBLEMS, 2002, 18 (06) : 1537 - 1554
  • [9] Increasing stability for the inverse problem for the Schrodinger equation
    Choudhury, Anupam Pal
    Heck, Horst
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2018, 41 (02) : 606 - 614
  • [10] STABILITY OF THE INVERSE PROBLEM FOR THE HELMHOLTZ-EQUATION
    DYATLOV, GV
    SIBERIAN MATHEMATICAL JOURNAL, 1994, 35 (03) : 522 - 538