On the stability of an inverse problem for the wave equation

被引:13
|
作者
Bao, Gang [1 ]
Yun, Kihyun [1 ]
机构
[1] Michigan State Univ, Dept Math, E Lansing, MI 48824 USA
关键词
BOUNDARY-VALUE PROBLEM; THEOREM;
D O I
10.1088/0266-5611/25/4/045003
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Consider the inverse problem of determining the potential q from the Neumann to Dirichlet map Lambda(q) of the wave equation u(tt) - Delta u + qu = 0 in Omega x (0, T) with u(x, 0) = u(t) (x, 0) = 0. In this paper, a nearly Lipschitz-type stability estimate is established for the inverse problem: for any small epsilon > 0, there exists beta(0) > 0 such that parallel to q(1) - q(2)parallel to (infinity)(L)((Omega)) <= C parallel to Lambda(q1) - Lambda(q2) parallel to(1-epsilon)(*) when parallel to q(1) - q(2)parallel to(H beta (Rn)) <= M for some beta > beta(0). Here, parallel to.parallel to(*) represents the operator norm.
引用
收藏
页数:7
相关论文
共 50 条
  • [1] Stability of an inverse problem for the discrete wave equation and convergence results
    Baudouin, Lucie
    Eryedoza, Sylvain
    Osses, Axel
    JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 2015, 103 (06): : 1475 - 1522
  • [2] Stability estimate for an inverse problem for the wave equation in a magnetic field
    Bellassoued, Mourad
    Benjoud, Hajer
    APPLICABLE ANALYSIS, 2008, 87 (03) : 277 - 292
  • [3] An inverse problem for the wave equation
    Boumenir, Amin
    Tuan, Vu Kim
    JOURNAL OF INVERSE AND ILL-POSED PROBLEMS, 2011, 19 (4-5): : 573 - 592
  • [4] ON INVERSE PROBLEM FOR WAVE EQUATION
    LAVRENTEV, MM
    DOKLADY AKADEMII NAUK SSSR, 1964, 157 (03): : 520 - &
  • [5] The conditional stability in line unique continuation for a wave equation and an inverse wave source problem
    Cheng, J
    Peng, L
    Yamamoto, M
    INVERSE PROBLEMS, 2005, 21 (06) : 1993 - 2007
  • [6] An inverse source problem for the wave equation
    Ton, BA
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2003, 55 (03) : 269 - 284
  • [7] Inverse Problem for a Nonlinear Wave Equation
    Romanov V.G.
    Bugueva T.V.
    Journal of Applied and Industrial Mathematics, 2022, 16 (02) : 333 - 348
  • [8] An Inverse Problem for a Semilinear Wave Equation
    Romanov, V. G.
    DOKLADY MATHEMATICS, 2022, 105 (03) : 166 - 170
  • [9] INVERSE PROBLEM FOR WAVE-EQUATION
    AMIROV, AK
    PASHAYEV, RT
    DOKLADY AKADEMII NAUK SSSR, 1991, 319 (03): : 521 - 522
  • [10] Inverse problem for a quasilinear wave equation
    A. M. Denisov
    Differential Equations, 2007, 43 : 1123 - 1131