Hausdorff Dimension and Measure of a Class of Subsets of the General Sierpinski Carpets

被引:0
|
作者
Yong Xin GUI Department of Mathematics
机构
关键词
the general Sierpinski carpets; Hausdorff dimension; Hausdorff measure;
D O I
暂无
中图分类号
O174.12 [测度论];
学科分类号
070104 ;
摘要
In this paper we study a class of subsets of the general Sierpinski carpets for which twogroups of allowed digits occur in the expansions with proportional frequency. We calculate the Hausdorffand Box dimensions of these subsets and give necessary and sufficient conditions for the correspondingHausdorff measure to be positive and finite.
引用
收藏
页码:1369 / 1382
页数:14
相关论文
共 50 条
  • [41] The Hausdorff and packing dimensions of some sets related to Sierpinski carpets
    Nielsen, OA
    CANADIAN JOURNAL OF MATHEMATICS-JOURNAL CANADIEN DE MATHEMATIQUES, 1999, 51 (05): : 1073 - 1088
  • [42] THE CENTERED HAUSDORFF MEASURE OF THE SIERPINSKI GASKET
    Llorente, Marta
    Mera, Maria Eugenia
    Moran, Manuel
    FRACTALS-COMPLEX GEOMETRY PATTERNS AND SCALING IN NATURE AND SOCIETY, 2023, 31 (09)
  • [43] BOUNDS OF THE HAUSDORFF MEASURE OF SIERPINSKI CARPET
    Baoguo Jia (Zhongshan University
    Analysis in Theory and Applications, 2006, (04) : 362 - 376
  • [44] A generalized multifractal spectrum of the general Sierpinski carpets
    Gui, Yongxin
    Li, Wenxia
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2008, 348 (01) : 180 - 192
  • [45] A new estimate of the Hausdorff measure of the Sierpinski gasket
    Zhou, ZL
    Li, F
    NONLINEARITY, 2000, 13 (03) : 479 - 491
  • [46] A lower bound for the Hausdorff measure of the Sierpinski gasket
    Jia, BG
    Zhou, ZL
    Zhu, ZW
    NONLINEARITY, 2002, 15 (02) : 393 - 404
  • [47] Ultrametric subsets with large Hausdorff dimension
    Mendel, Manor
    Naor, Assaf
    INVENTIONES MATHEMATICAE, 2013, 192 (01) : 1 - 54
  • [48] Ultrametric subsets with large Hausdorff dimension
    Manor Mendel
    Assaf Naor
    Inventiones mathematicae, 2013, 192 : 1 - 54
  • [49] The Hausdorff dimension of the projections of self-affine carpets
    Ferguson, Andrew
    Jordan, Thomas
    Shmerkin, Pablo
    FUNDAMENTA MATHEMATICAE, 2010, 209 (03) : 193 - 213
  • [50] On the Hausdorff dimension of ultrametric subsets in Rn
    Lee, James R.
    Mendel, Manor
    Moharrami, Mohammad
    FUNDAMENTA MATHEMATICAE, 2012, 218 (03) : 285 - 290