Non-algebraic compact Khler threefolds admitting endomorphisms

被引:0
|
作者
HRING Andreas [1 ]
PETERNELL Thomas [2 ]
机构
[1] Universit Pierre et Marie Curie,Institut de Mathmatiques de Jussieu,Equipe de Topologie et Gomtrie Algbrique,175,rue du Chevaleret,75013 Paris,France
[2] Mathematisches Institut,Universitt Bayreuth,95440 Bayreuth,Germany
关键词
endomorphism; compact Ka¨hler manifold; non-algebraic manifold; torus fibrations; MMP;
D O I
暂无
中图分类号
O186.12 [黎曼几何];
学科分类号
070104 ;
摘要
We classify non-algebraic compact Khler threefolds admitting an endomorphism f:X → X of degree at least two.
引用
收藏
页码:1635 / 1664
页数:30
相关论文
共 50 条
  • [21] Non-isomorphic endomorphisms of Fano threefolds
    Meng, Sheng
    Zhang, De-Qi
    Zhong, Guolei
    MATHEMATISCHE ANNALEN, 2022, 383 (3-4) : 1567 - 1596
  • [22] Non-isomorphic endomorphisms of Fano threefolds
    Sheng Meng
    De-Qi Zhang
    Guolei Zhong
    Mathematische Annalen, 2022, 383 : 1567 - 1596
  • [23] A Note on Kähler–Ricci Flow on Fano Threefolds
    Minghao Miao
    Gang Tian
    Peking Mathematical Journal, 2025, 8 (1) : 191 - 199
  • [24] ON THE SLOPE OF NON-ALGEBRAIC HOLOMORPHIC FOLIATIONS
    Hong, Jie
    Lu, Jun
    Tan, Sheng-Li
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2020, 148 (11) : 4817 - 4830
  • [25] SOME EXAMPLES OF NON-ALGEBRAIC SINGULARITIES
    BINGENER, J
    FLENNER, H
    JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 1979, 305 : 182 - 194
  • [26] On systems of non-algebraic equations in Cn
    Kytmanov, Aleksandr M.
    Khodos, Olga V.
    TOPICS IN SEVERAL COMPLEX VARIABLES, 2016, 662 : 77 - 88
  • [27] RING TOPOLOGIES ON NON-ALGEBRAIC FIELDS
    HEINE, J
    MATHEMATISCHE ANNALEN, 1972, 199 (03) : 205 - &
  • [28] SOME REMARKS ON NON-ALGEBRAIC ADHERENCES
    ISTRAIL, S
    THEORETICAL COMPUTER SCIENCE, 1982, 21 (03) : 341 - 349
  • [29] Cusp Kähler–Ricci flow on compact Kähler manifolds
    Jiawei Liu
    Xi Zhang
    Annali di Matematica Pura ed Applicata (1923 -), 2019, 198 : 289 - 306
  • [30] The Kähler cone of a compact hyperkähler manifold
    Daniel Huybrechts
    Mathematische Annalen, 2003, 326 : 499 - 513